Answer:
-10.8°, or 10.8° below the +x axis
Explanation:
The x component of the resultant vector is:
x = 3.14 cos(30.0°) + 2.71 cos(-60.0°)
x = 4.07
The y component of the resultant vector is:
y = 3.14 sin(30.0°) + 2.71 sin(-60.0°)
y = -0.777
Therefore, the angle between the resultant vector and the +x axis is:
θ = atan(y / x)
θ = atan(-0.777 / 4.07)
θ = -10.8°
The angle is -10.8°, or 10.8° below the +x axis.
Answer:
Option D.
Value cannot be calculated without knowing the speed of the train
Explanation:
The speed of the beam can only be calculated accurately when the speed of the train is put into consideration. Based of the theory of relativity, the observer is on the ground, and the train is moving with the beam of light inside it. This causes a variation in the reference frames when making judgements of the speed of the beam. The speed of the beam will be more accurate if the observer is moving at the same sped of the train, or the train is stationary.
To get the correct answer, we have to subtract the speed of the train from the speed calculated.
Answer:
(c) no different than on a low-pressure day.
Explanation:
The force acting on the ship when it floats in water is the buoyant force. According to the Archimedes' principle: The magnitude of buoyant force acting on the body of the object is equal to the volume displaced by the object.
Thus, Buoyant forces are a volume phenomenon and is determined by the volume of the fluid displaced.
<u>Whether it is a high pressure day or a low pressure day, the level of the floating ship is unaffected because the increased or decreased pressure at the all the points of the water and the ship and there will be no change in the volume of the water displaced by the ship.</u>