Answer: 83.3 W
Explanation: I think, I’m not sure. If I’m wrong correct me ;)
Answer:
497.00977 N
3742514.97005
Explanation:
= Density of water = 1000 kg/m³
C = Drag coefficient = 0.09
v = Velocity of dolphin = 7.5 m/s
r = Radius of bottlenose dolphin = 0.5/2 = 0.25 m
A = Area
Drag force

The drag force on the dolphin's nose is 497.00977 N
at 20°C
= Dynamic viscosity = 
Reynold's Number

The Reynolds number is 3742514.97005
Answer:
A-the energy of the wave decreases gradually
Explanation:
when a wave is acted upon by an external damping force the energy of the wave decreases gradually.
The energy degrades into the form of heat which is considered to be of less value and use. The reason is because it disperses and spreads more widely.
So therefore it end up as heat with a little sound but that is close to none because that too disperses into heat i.e. decreased form of energy.
Explanation:
For each object, the initial potential energy is converted to rotational energy and translational energy:
PE = RE + KE
mgh = ½ Iω² + ½ mv²
For the marble (a solid sphere), I = ⅖ mr².
For the basketball (a hollow sphere), I = ⅔ mr².
For the manhole cover (a solid cylinder), I = ½ mr².
For the wedding ring (a hollow cylinder), I = mr².
If we say k is the coefficient in each case:
mgh = ½ (kmr²) ω² + ½ mv²
For rolling without slipping, ωr = v:
mgh = ½ kmv² + ½ mv²
gh = ½ kv² + ½ v²
2gh = (k + 1) v²
v² = 2gh / (k + 1)
The smaller the value of k, the higher the velocity. Therefore:
marble > manhole cover > basketball > wedding ring
Answer:
(a) A = m/s^3, B = m/s.
(b) dx/dt = m/s.
Explanation:
(a)

Therefore, the dimension of A is m/s^3, and of B is m/s in order to satisfy the above equation.
(b) 
This makes sense, because the position function has a unit of 'm'. The derivative of the position function is velocity, and its unit is m/s.