The average power produced by the soccer player is 710 Watts.
Given the data in the question;
- Mass of the soccer player;

- Energy used by the soccer player;

- Time;

Power; 
Power is simply the amount of energy converted or transferred per unit time. It is expressed as:

We substitute our given values into the equation
![Power = \frac{5100000J}{7200s}\\\\Power = 708.33J/s \\\\Power = 710J/s \ \ \ \ \ [ 2\ Significant\ Figures]\\\\Power = 710W](https://tex.z-dn.net/?f=Power%20%3D%20%5Cfrac%7B5100000J%7D%7B7200s%7D%5C%5C%5C%5CPower%20%3D%20708.33J%2Fs%20%5C%5C%5C%5CPower%20%3D%20710J%2Fs%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B%202%5C%20Significant%5C%20Figures%5D%5C%5C%5C%5CPower%20%3D%20710W)
Therefore, the average power produced by the soccer player is 710 Watts.
Learn more: brainly.com/question/20953664
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.