Answer:
Explanation:
D = 8.27 m ⇒ R = D / 2 = 8.27 m / 2 = 4.135 m
ω = 0.66 rev/sec = (0.66 rev/sec)*(2π rad/1 rev) = 4.1469 rad/s
We can apply the equation
Ff = W ⇒ μ*N = m*g <em>(I)</em>
then we have
N = Fc = m*ac = m*(ω²*R)
Returning to the equation <em>I</em>
<em />
μ*N = m*g ⇒ μ*m*ω²*R = m*g ⇒ μ = g / (ω²*R)
Finally
μ = (9.81 m/s²) / ((4.1469 rad/s)²*4.135 m) = 0.1379
K=1400*V^2/2
K=20000*25^2/2. => 1400*V^2/2=20000*25^2/2 <=> 1400*V^2=20000*25^2
14*V^2=200*225
v^2=100*225/7
v=250/7^(1/2)
Answer: 250*7^(1/2)/7
Answer:
Kinetic energy
Explanation:
When an apple falls from a tree it has to do with the energy from gravity. Gravity energy turns into kinetic energy once its in motion.
Sorry if im wrong
Complete Question
Suppose you have three identical metal spheres, A, B, and C. Initially sphere A carries a charge q and the others are uncharged. Sphere A is brought in contact with sphere B, and then the two are separated. Spheres CC and BB are then brought in contact and separated. Finally spheres AA and CC are brought in contact and then separated. What is the final charge on the sphere B, in terms of q?
a. 3/8q
b. 1/4q
c. 3/4q
d. q
e. 5/8q
f. 1/3q
g.1/2q
h. 0
Answer:
The correct option is b
Explanation:
From the question we are told that
The charge carried by A is q C
The charge carried by B is 0 C
The charge carried by C is 0 C
When A and B are brought close and then separated the charge carried by A and B is mathematically evaluated as

When C and B are brought close and then separated the charge carried by C and B is mathematically evaluated as

When C and A are brought close and then separated the charge carried by C and A is mathematically evaluated as

Looking at these calculation we can see that the charge carried by B is

Answer:
The carriage has the energy, W = 2469.6 J
Explanation:
Given data,
The height of the hill, h = 21 m
The carriage with the baby weighs, m = 12 kg
The energy possessed by the body due to its position is the potential energy,
<em>W = P.E = mgh joules</em>
Substituting the values,
W = 12 x 9.8 x 21
= 2469.6 J
Hence, the carriage has the energy, W = 2469.6 J