<span>Answer:
Let m = mass of cannon
Then
10000 = ma
a = 10000/m
v^2 = u^2 + 2as
v^2 = 0 + 2as
84^2 = 2(2.21)(10000/m)
84^2 m = 4.42(10000)
m = 6.264172336
= 6.26 kg
Part 2
Range = u^2sin(2x38)/g
= 84^2sin(76)/9.8
= 698.6129229
= 698.6 m</span>
Data:
mass, m = 30.94 g
density, d = 19.32 g/cm^3
Formula: d = m / v => v = m / d = 30.94 g / 19.32 g/cm^3 = 1.60 cm^3
Then, the answer is the option C.
Answer:
A. The sum of all the forces acting on an object.
Answer:
V_f = 287.04 mL
Explanation:
We are given the initial/original volume of the glycerine as 285 mL.
Now, after it is finally cooled back to 20.0 °C , its volume is given by the formula;
V_f = V_i (1 + βΔT)
Where;
V_f is the final volume
V_i is the original volume = 285 mL
β is the coefficient of expansion of glycerine and from online tables, it has a value of 5.97 × 10^(-4) °C^(−1)
Δt is change in temperature = final temperature - initial temperature = 32 - 20 = 12 °C
Thus, plugging in relevant values;
V_f = 285(1 + (5.97 × 10^(-4) × 12))
V_f = 287.04 mL