What happens when the light hits the glass depends on what it was in before it hit the glass.
WHILE it's in the glass, the speed of light doesn't change.
Answer:
E = hf or 
Explanation:
The expression that gives the amount of light energy that is converted to other forms between the fluorescence excitation and emission events is given by :
E = hf
f is the frequency

c is the speed of light
is the wavelength
Hence, this is the required solution.
Answer:
Explanation:
A wave is a phenomenon that travels through a material medium without any permanent effect on the medium. It can be classified as mechanical or electromagnetic waves. And the two major types are transverse and longitudinal.
From the given question;
1. Longitudinal waves e.g sound waves, waves in a spring'
2. Frequency (number of cycles per second).
3. Wavelength of the wave. Measured in meters.
4. Transverse waves e.g light waves, water waves.
5. Wave speed.
6. Electromagnetic waves e.g ultraviolet waves, X-rays etc.
7. Amplitude.
8. Hertz.
9. Rarefaction
10. Compression
Answer:
The image is formed at 0.44 m in front of the mirror
magnification (M) = 0.44
Explanation:
Applying, mirror formular
1/f = (1/u)+(1/v).................... Equation 1
Where f = Focal length of the convex mirror, u = object distance, v = image distance.
Using the real is positive convection,
From the question,
Given: f = -1.6/2 = -0.8 m( The focal length of a convex mirror is vitual), u = 1.0 m
Substitute these values into equation 1
-1/0.8 = (1/v)+(1/1)
Solve for v
1/v = 1.25+1
1/v = 2.25
v = 1/2.25
v = 0.44 m
Hence the image is formed at 0.44 m in front of the mirror
Magnification (M) = v/u
m = 0.44/1
m = 0.44