The same braking force does work on these objects to slow them down. The work done is equal to their change in kinetic energy:
FΔx = 0.5mv²
F = force, Δx = distance traveled, m = mass, v = speed
Isolate Δx:
Δx = 0.5mv²/F
Calculate Δx for each object.
Object 1: m = 4.0kg, v = 2.0m/s
Δx = 0.5(4.0)(2.0)²/F = 8/F
Object 2: m = 1.0kg, v = 4.0m/s
Δx = 0.5(1.0)(4.0)²/F = 8/F
The two objects travel the same distance before stopping.
Answer:
1.925 μC
Explanation:
Charge: This can be defined as the product of the capacitance of a capacitor and the voltage. The S.I unit of charge is Coulombs (C)
The formula for the charge stored in a capacitor is given as,
Q = CV ................... Equation 1
Where Q = charge, C = Capacitor, V = Voltage.
Note: 1 μF = 10⁻⁶ F
Given: C = 0.55 μF = 0.55×10⁻⁶ F, V = 3.5 V.
Substitute into equation 1
Q = 0.55×10⁻⁶×3.5
Q = 1.925×10⁻⁶ C.
Q = 1.925 μC
Hence the charge on the plate = 1.925 μC
Answer:
1,200 watts
Explanation:
1 watt = 1 Joule (J) of work / second
So, 3600 Joules of work / 3 seconds is:
3600 J / 3 seconds = 1,200 watts
There are two main types of friction, static friction and kinetic friction. Static friction operates between
Answer:
Acceleration is towards the center of the earth
Explanation:
khan