The formula for force exerted on/by a spring is
F = k*e where k is the spring constant and x is the distance stretched from
unstrained position. This should allow you to find what you need.
Using F = k x e,
where k is the spring constant,
and e is the extension,
The F is her weight = 45 X 0.80
= 36 N
Answer: The speed will be 30 m/s .
Explanation:
Given: Initial velocity of the car: u = 0 m/s
Constant Acceleration: a = 5 m/s²
Time: t= 6 seconds
To find: Final velocity(v)
Formula: v = u+at
Substitute values in the formula, we get
v= 0+(5)(6) m/s
⇒ v= 30 m/s
i.e. Final velocity = 30 m/s
Hence, the speed will be 30 m/s .
Think about it like this, the more mass there is, the faster its going to go. If you took a golf ball and a ping pong ball and you held them each separately, you would notice that the golf ball is heavier. If they move with the same kinetic energy, but the golf ball WEIGHS more, then the golf ball will have the greater speed. If you think about it, the ping pong ball may be taking its time to get to wherever its going.
Answer:
<u>Conservation</u>: using less water
<u>Xeriscaping</u>: replanting your yard with plants that do not require great amounts of water
<u>Desalination</u>: process of removing salt from water so that it can be used for consumption
<u>Water Budget</u>: finite amount of usable water available
<u>Potable</u>: water that is safe to use a drink
Please mark me as Brainliest ......