U=mgh
U=10*9.8*20
U=1960
Answer is D
Answer:
350 kg m/s
Explanation:
Momentum = mass × velocity
p = mv
p = (100 kg) (3.5 m/s)
p = 350 kg m/s
Answer:
See bolded below.
Explanation:
Consider the " Before " and " After. " " Before, " this particle 1 was trying to catch up with this particle 2, and " after " particle one had collided with particle two. Take a look at the attachment below for a more detailed examination.
Here is how this will play out. Particle 1, with great velocity, will hit particle 2, which would mean that Particle 2 has less velocity than Particle 1. Now after the collision, energy is transferred to Particle 2, and while Particle 1 has now stopped in it's tracks, Particle 2 - with more energy than before - will continue as long as it has to before friction eventually brings it to a stop.
_______________________________________________________
From this we can conclude that Vf, from the picture below, must have less energy than V1, but more energy than V2 - and vice versa.
Kinetic Energy = (1/2) mv^2.
m = 57.7 g = 57.7/1000 = 0.00577 kg.
v = 325 m/s.
E = 0.5 * 0.00577 * 325^ 2. Use your calculator.
E = 304.728125 J.
That's the kinetic energy.