Answer:
The ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of second coil.
And
The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of fourth coil.
Explanation:
The resistance of the coil is directly proportional to the length of the coil and inversely proportional to the area of coil and hence inversely proportional to the square of radius of the coil.
So, the ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of second coil.
And
The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of fourth coil.
I hope the wire is not wound too tightly around the bar magnet.
The device will generate electrical energy when the bar magnet
is moving in or out of the coil of wire.
Answer:
2 meters towards the mirror.
Explanation:
In a plane mirror the image distance is equal to the object distance. Therefore, by moving 2 meters towards the mirror, the boy reduces the distance between him and the mirror to two meters which is the object distance. The image distance is also 2 meters. add the two distances you will get four meters.
<span>a) 1960 m
b) 960 m
Assumptions.
1. Ignore air resistance.
2. Gravity is 9.80 m/s^2
For the situation where the balloon was stationary, the equation for the distance the bottle fell is
d = 1/2 AT^2
d = 1/2 9.80 m/s^2 (20s)^2
d = 4.9 m/s^2 * 400 s^2
d = 4.9 * 400 m
d = 1960 m
For situation b, the equation is quite similar except we need to account for the initial velocity of the bottle. We can either assume that the acceleration for gravity is negative, or that the initial velocity is negative. We just need to make certain that the two effects (falling due to acceleration from gravity) and (climbing due to initial acceleration) counteract each other. So the formula becomes
d = 1/2 9.80 m/s^2 (20s)^2 - 50 m/s * T
d = 1/2 9.80 m/s^2 (20s)^2 - 50m/s *20s
d = 4.9 m/s^2 * 400 s^2 - 1000 m
d = 4.9 * 400 m - 1000 m
d = 1960 m - 1000 m
d = 960 m</span>
Answer:
A) 140 k
b ) 5.22 *10^3 J
c) 2910 Pa
Explanation:
Volume of Monatomic ideal gas = 1.20 m^3
heat added ( Q ) = 5.22*10^3 J
number of moles (n) = 3
A ) calculate the change in temp of the gas
since the volume of gas is constant no work is said to be done
heat capacity of an Ideal monoatomic gas ( Q ) = n.(3/2).RΔT
make ΔT subject of the equation
ΔT = Q / n.(3/2).R
= (5.22*10^3 ) / 3( 3/2 ) * (8.3144 J/mol.k )
= 140 K
B) Calculate the change in its internal energy
ΔU = Q this is because no work is done
therefore the change in internal energy = 5.22 * 10^3 J
C ) calculate the change in pressure
applying ideal gas equation
P = nRT/V
therefore ; Δ P = ( n*R*ΔT/V )
= ( 3 * 8.3144 * 140 ) / 1.20
= 2910 Pa