The total electric potential at the center of the square due to the four charges is V = √2Q/πÈa.
<h3>What do you mean by electric potential? </h3>
The amount of work needed to move a unit charge from a reference point to a specific point against an electric field. It's SI unit is volt.
V = kq/r
Where V represents electric potential, K is coulomb constant, q is Charge and r is distance between any two around charge to the point charge.
Electric potential at O due to four charges is given by,
V = 4KQ/ r
where, r = √2a/2 = a/√2
V = 4k × Q√2/a
V = √2Q/πÈa
The total electric potential at the center of the square due to the four charges is V = √2Q/πÈa.
To learn more about electric potential refer to:
brainly.com/question/12645463
#SPJ4
Hubble time in cosmology means the estimated age of the universe and the best calculation for it is T=1/H, where H is the Hubble constant
Answer:
because the gravitational pull is maximum at the poles and decreases as it comes down toward the equator.
Answer:
The correct answer is B
Explanation:
Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity
Φ
= ∫ E. dA =
/ ε₀
For this case we create a Gaussian surface that is a sphere. We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product
∫ E dA =
/ ε₀
The area of a sphere is
A = 4π r²
E 4π r² =
/ ε₀
E = (1 /4πε₀
) q / r²
Having the solution of the problem let's analyze the points:
A ) r = 3R / 4 = 0.75 R.
In this case there is no charge inside the Gaussian surface therefore the electric field is zero
E = 0
B) r = 5R / 4 = 1.25R
In this case the entire charge is inside the Gaussian surface, the field is
E = (1 /4πε₀
) Q / (1.25R)²
E = (1 /4πε₀
) Q / R2 1 / 1.56²
E₀ = (1 /4π ε₀
) Q / R²
= Eo /1.56
²
= 0.41 Eo
C) r = 2R
All charge inside is inside the Gaussian surface
=(1 /4π ε₀
) Q 1/(2R)²
= (1 /4π ε₀
) q/R² 1/4
= Eo 1/4
= 0.25 Eo
D) False the field changes with distance
The correct answer is B
The correct answer is C. Final Velocity
Hope this helped!