1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
3 years ago
10

The third floor of a house is 8m above street level. How much work is needed to move a 136kg refrigerator to the third floor?

Physics
1 answer:
jonny [76]3 years ago
8 0

m = Mass of the refrigerator to be moved to third floor = 136 kg

g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²

h = Height to which the refrigerator is moved  = 8 m

W = Work done in lifting the object

Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence

Work done = Gravitation potential energy of refrigerator

W = m g h

inserting the values

W = (136) (9.8) (8)

W = 10662.4 J



You might be interested in
The first and second coils have the same length, and the third and fourth coils have the same length. They differ only in the cr
tatyana61 [14]

Answer:

The ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of  second coil.

And

The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of  fourth coil.

Explanation:

The resistance of the coil is directly proportional to the length of the coil and inversely proportional to the area of coil and hence inversely proportional to the square of radius of the coil.

So, the ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of  second coil.

And

The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of  fourth coil.

8 0
3 years ago
A student coils a copper wire around a bar magnet. What action will cause the device to generate electricity?
kolbaska11 [484]

I hope the wire is not wound too tightly around the bar magnet.
The device will generate electrical energy when the bar magnet
is moving in or out of the coil of wire.

6 0
3 years ago
a boy is standing 4 meter from a plane mirror how far and in what distance must te move so that he will be 4 meter from his imag
Alona [7]

Answer:

2 meters towards the mirror.

Explanation:

In a plane mirror the image distance is equal to the object distance. Therefore, by moving 2 meters towards the mirror, the boy reduces the distance between him and the mirror to two meters which is the object distance. The image distance is also 2 meters. add the two distances you will get four meters.

6 0
3 years ago
A bottle dropped from a balloon reaches the ground in 20 s. determine the height of the balloon if (a) it was at rest in the air
romanna [79]
<span>a) 1960 m b) 960 m Assumptions. 1. Ignore air resistance. 2. Gravity is 9.80 m/s^2 For the situation where the balloon was stationary, the equation for the distance the bottle fell is d = 1/2 AT^2 d = 1/2 9.80 m/s^2 (20s)^2 d = 4.9 m/s^2 * 400 s^2 d = 4.9 * 400 m d = 1960 m For situation b, the equation is quite similar except we need to account for the initial velocity of the bottle. We can either assume that the acceleration for gravity is negative, or that the initial velocity is negative. We just need to make certain that the two effects (falling due to acceleration from gravity) and (climbing due to initial acceleration) counteract each other. So the formula becomes d = 1/2 9.80 m/s^2 (20s)^2 - 50 m/s * T d = 1/2 9.80 m/s^2 (20s)^2 - 50m/s *20s d = 4.9 m/s^2 * 400 s^2 - 1000 m d = 4.9 * 400 m - 1000 m d = 1960 m - 1000 m d = 960 m</span>
6 0
4 years ago
Three moles of a monatomic ideal gas are heated at a constant volume of 1.20 m3. The amount of heat added is 5.22x10^3 J.(a) Wha
k0ka [10]

Answer:

A) 140 k

b ) 5.22 *10^3 J

c) 2910 Pa

Explanation:

Volume of Monatomic ideal gas = 1.20 m^3

heat added ( Q ) = 5.22*10^3 J

number of moles  (n)  = 3

A ) calculate the change in temp of the gas

since the volume of gas is constant no work is said to be done

heat capacity of an Ideal monoatomic gas ( Q ) = n.(3/2).RΔT

make ΔT subject of the equation

ΔT = Q / n.(3/2).R

    = (5.22*10^3 ) / 3( 3/2 ) * (8.3144 J/mol.k )

    = 140 K

B) Calculate the change in its internal energy

ΔU = Q  this is because no work is done

therefore the change in internal energy = 5.22 * 10^3 J

C ) calculate the change in pressure

applying ideal gas equation

P = nRT/V

therefore ; Δ P = ( n*R*ΔT/V )

                        = ( 3 * 8.3144 * 140 ) / 1.20

                        = 2910 Pa

3 0
3 years ago
Other questions:
  • Calculate the Energy (E) in joules for that wavelength and record it in the table below. Remember that E = HF, where h the Planc
    11·1 answer
  • Will give brainliest to right answer!
    13·1 answer
  • Which is the best example of Newton's Second Law of Motion? (1 point) Select one: a. A student has on roller skates and she deci
    12·1 answer
  • Which air mass would produce cold dry weather in the winter?
    10·2 answers
  • Is fe a reactant or product
    14·2 answers
  • A speeder passes a parked police car at a constant speed of 23.3 m/s. At that instant, the police car starts from rest with a un
    5·1 answer
  • Convert the following quantities <br><img src="https://tex.z-dn.net/?f=25m%20%7B%7D%5E%7B2%7D%20%20%5C%3A%20into%20%5C%3A%20cm%2
    7·1 answer
  • You are handed a 5.00x10^-3kg coin and told that it is gold.
    14·1 answer
  • When a 3.0 N weight is attached to a vertical coil spring, it stretches 5.0 cm. What weight would be required to stretch the spr
    9·1 answer
  • a crude approximation of voice production is to consider the breathing passages and mouth to be a resonating tube closed at one
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!