Answer:
Distance of 400m.
Explanation:
Use your kinematics equation to solve for distance (we can use kinematics b/c acceleration is constant).
d = (initial velocity x time) + 1/2 at^2
d = (20 x 10) + 1/2 (4) (10)^2
d = 200 + 200
d = 400 m
The final position of the object after 2 s is 11 m.
Motion: This can be defined as the change in position of a body.
⇒ Formula:
- x = x₀+v₀t+1/2(at²)........................ Equation 1
⇒ Where:
- x = Final position of the object
- x₀ = Starting position
- v₀ = Starting velocity
- t = time
- a = acceleration
From the question,
⇒ Given:
- x₀ = 4.5 m/s
- t = 2 s
- x₀ = 2m
- a = 0 m/s²
⇒ Substitute these values into equation 1
- x = 2+(4.5×2)+1/2(0²×2)
- x = 2+9+0
- x = 11 m
Hence, The final position of the object after 2 s is 11 m
Learn more about motion here: brainly.com/question/15531840
Answer:
Unlike hard disks, which use magnetic charges to represent 1s and 0s, Compact Disks, DVD's or Blue Rays use reflected light.
Explanation:
The way CD's work is that they are hit by a laser beam which is reflected on the surface of the disc. These disks have some valleys and mountains that reflect light differently so the CD player will interpret these differences in reflection as data which will then be turned into music, videos or computer files.
Answer:
Same direction to produce maximum magnitude and opposite direction to produce minimum magnitude
Explanation:
Let a be the angle between vectors A and B. Generally when we add A to B, we can split A into 2 sub vectors, 1 parallel to B and the other perpendicular to B.
Also let A and B be the magnitude of vector A and B, respectively.
We have the parallel component after addition be
Acos(a) + B
And the perpendicular component after addition be
Asin(a)
The magnitude of the resulting vector would be




As A and B are fixed, the equation above is maximum when cos(a) = 1, meaning a = 0 degree and vector A and B are in the same direction, and minimum with cos(a) = -1, meaning a = 180 degree and vector A and B are in opposite direction.
The Cell Body is the part of the neuron that decides whether the message will travel