Hi there!
According to Newton's second law:
∑F = m · a, where:
∑F = net force (N = kgm/s²)
m = mass (kg)
a = acceleration (m/s²)
Rearrange to solve for acceleration:
F/m = a
20N / 4.0kg = 5 m/s²
answer:They are too close to the sun!
Explanation:Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.Same with Venus!
Answer:
955.5N
Explanation:
The normal force is given by the difference between the centripetal force and gravity at the top of the loop:

mass m = 65kg
radius of the loop r = 4m
velocity v = ?
g = 9.8 m/s²
To find the centripetal force, you need to find the velocity of the car at the top of the loop.
Use energy conservation:

At the top of the hill:

At the top of the loop:

Setting both energies equal and canceling the mass m gives:

Solving for v:

Using v in the first equation:

<span>a.The hiker had an easy, level trail from 11:00-12:00 and was able to travel the fastest during that time period.---> may be because this was indeed fastest stage
b.The hiker got tired and walked the slowest from 1:00-2:00.---> no, because this was not the slowest stage
c.The hiker stopped for lunch from 11:00-12:00 and that slowed him down.---> no because this was the fastest stage
d.The hiker ended up in the same place that he started.---> no, because the hiker walked more toward east than toward west and more toward south than toward north.
Answer: option a) </span>
<span>the speed of something in a given direction. so i think none of these</span>