Answer:
Explanation:
<h2><u>Given</u> :-</h2>
<h2><u>To Find</u> :-</h2>
<h2><u>Formula to be used</u> :-</h2>
Where,
- K.E. = Kinetic energy possessed by the body
- M = Mass of the body
- V = Velocity of the body
<h2><u>Solution</u> :-</h2>








- Velocity of the vehicle at the instant is

Answer:
vi = 4.77 ft/s
Explanation:
Given:
- The radius of the surface R = 1.45 ft
- The Angle at which the the sphere leaves
- Initial velocity vi
- Final velocity vf
Find:
Determine the sphere's initial speed.
Solution:
- Newton's second law of motion in centripetal direction is given as:
m*g*cos(θ) - N = m*v^2 / R
Where, m: mass of sphere
g: Gravitational Acceleration
θ: Angle with the vertical
N: Normal contact force.
- The sphere leaves surface at θ = 34°. The Normal contact is N = 0. Then we have:
m*g*cos(θ) - 0 = m*vf^2 / R
g*cos(θ) = vf^2 / R
vf^2 = R*g*cos(θ)
vf^2 = 1.45*32.2*cos(34)
vf^2 = 38.708 ft/s
- Using conservation of energy for initial release point and point where sphere leaves cylinder:
ΔK.E = ΔP.E
0.5*m* ( vf^2 - vi^2 ) = m*g*(R - R*cos(θ))
( vf^2 - vi^2 ) = 2*g*R*( 1 - cos(θ))
vi^2 = vf^2 - 2*g*R*( 1 - cos(θ))
vi^2 = 38.708 - 2*32.2*1.45*(1-cos(34))
vi^2 = 22.744
vi = 4.77 ft/s
Answer:
I think the right answer is option B.
Answer:
The tangential speed of the tack is 6.988 meters per second.
Explanation:
The tangential speed experimented by the tack (
), measured in meters per second, is equal to the product of the angular speed of the wheel (
), measured in radians per second, and the distance of the tack respect to the rotation axis (
), measured in meters, length that coincides with the radius of the tire. First, we convert the angular speed of the wheel from revolutions per second to radians per second:


Then, the tangential speed of the tack is: (
,
)


The tangential speed of the tack is 6.988 meters per second.
Answer:
36 N
Explanation:
Velocity of a standing wave in a stretched string is:
v = √(T/ρ),
where T is the tension and ρ is the mass per unit length.
300 m/s = √(T / 4×10⁻⁴ kg/m)
T = 36 N