Answer:
200 N
Explanation:
For a body moving in uniform circular motion, the force acting on it will be <em>centripetal force</em> and its direction is <em>radially inward</em> , pointing to the center.
The radially inward acceleration, or the centripetal acceleration is given by :
a = v² / r
where v is the speed at which the body is moving and r is the radius of the circle
Given-
m = 55kg
v = 14.1 m/s
r= 55m
We know that F = ma
⇒ F = m ( v²/ r )
⇒ F = 55 x 14.1 x 14.1 / 55
⇒ F =14.1 x 14.1 = 200 N
∴ <em>The force acting is 200 N</em>.
Answer:
The International Space Station move at 7.22 km/s.
Explanation:
Orbital speed of satellite is given by
, where G is gravitational constant, M is mass of Earth and r is the distance to satellite from centre of Earth.
r = R + h = 6350 + 1400 = 7750 km = 7.75 x 10⁶ m
G = 6.673 x 10⁻¹¹ Nm²/kg²
M = 5.98 x 10²⁴ kg
Substituting

The International Space Station move at 7.22 km/s.
The answer would be 72 miles. Hope this helped.
Answer:
13.6 cm
Explanation:
From Snell's law:
n₁ sin θ₁ = n₂ sin θ₂
In the air, n₁ = 1, and light from the horizon forms a 90° angle with the vertical, so sin θ₁ = sin 90° = 1.
Given n₂ = 4/3:
1 = 4/3 sin θ
sin θ = 3/4
If x is the radius of the circle, then sin θ is:
sin θ = x / √(x² + 12²)
sin θ = x / √(x² + 144)
Substituting:
3/4 = x / √(x² + 144)
9/16 = x² / (x² + 144)
9/16 x² + 81 = x²
81 = 7/16 x²
x ≈ 13.6