One of the examples is radiation and chemistry of water. Environmental science requires the capacity to integrate data from the greater part of the significant fields of science, and in addition from arithmetic.
Geology is vital on the grounds that huge scale arrives forms make geology. The presence of mountains and valleys influences how much daylight and precipitation achieve the ground, how breezy an area is, the manner by which precipitation keeps running off, and numerous different variables that figure out what plants and creatures will have the capacity to occupy a district.
Answer:
Pb is the substance that experiments the greatest temperature change.
Explanation:
The specific heat capacity refers to the amount of heat energy required to raise in 1 degree the temperature of 1 gram of substance. The highest the heat capacity, the more energy it would be required. These variables are related through the equation:
Q = c . m . ΔT
where,
Q is the amount of heat energy provided (J)
c is the specific heat capacity (J/g.°C)
m is the mass of the substance
ΔT is the change in temperature
Since the question is about the change in temperature, we can rearrange the equation like this:

All the substances in the options have the same mass (m=10.0g) and absorb the same amount of heat (Q=100.0J), so the change in temperature depends only on the specific heat capacity. We can see in the last equation that they are inversely proportional; the lower c, the greater ΔT. Since we are looking for the greatest temperature change, It must be the one with the lowest c, namely, Pb with c = 0.128 J/g°C. This makes sense because Pb is a metal and therefore a good conductor of heat.
Its change in temperature is:

Answer:
Their melting and boiling points of alkanes are relatively low. The higher the molecular weight (the greater the number of carbons), the higher the boiling point.