<h3>✽ - - - - - - - - - - - - - - - ~<u>Hello There</u>!~ - - - - - - - - - - - - - - - ✽</h3>
➷ It means that the electrons have absorbed extra energy
<h3><u>✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
Answer : The internal energy change is, -506.3 kJ/mol
Explanation :
Formula used :

or,

where,
= change in enthalpy = 
= change in internal energy = ?
= change in moles
Change in moles = Number of moles of product side - Number of moles of reactant side
According to the reaction:
Change in moles = 0 - 2 = -2 mole
That means, value of
= 0
R = gas constant = 8.314 J/mol.K
T = temperature = 
Now put all the given values in the above formula, we get




Therefore, the internal energy change is -506.3 kJ/mol
Answer:
The solution is given below
Explanation:
Heat, q= mc∆T
q= 125g x 4.18 J/g∙°C x (21.18x- 24.28) °C
q= -1619.75J
NEGATIVE SIGN INDICATES THAT HEAT IS ABSORBED.
Enthalpy Change, ∆H = 1619.75 7/ 10.5 g
= 154.26 J/g
No. of moles of KBr = Mass of KBr/ Molecular Weight of KBr
=10.5g/119gmol-1
=0.088 mol
∆H= 1619.75 J/ 0.088 mol
= 18.41 kJ/mol
Answer:
True
Explanation:
Dispensing chemical from large stock bottles into smaller container makes sure that students only takes the quantity they need which reduces wastage. Also in situation where the students did not finish the reagent or chemical it is easier for student to pour back into smaller bottle than the entire reagent bottle which can contaminate the whole solution. Small bottles prevent or reduces the risk of spillage because it is easier to handle and pour.