Answer is: new substance.
For example, synthesis chemical reaction: Ba + F₂ → BaF₂.
Synthesis reaction is a type of reaction in which multiple reactants combine to form a single product.
New substance, barium fluoride is formed, with different chemical and ohysical properties than reactants (barium and fluorine).
In barium fluoride, barium has oxidation number +2 and fluorine has oxidation number -1, so compound has neutral charge.
Answer:
No, I can not identify the contents of each bottle using solubility and polarity (with H2O) information
Explanation:
While it is true that polar substances dissolve in water and nonpolar substances do not dissolve in water, the task here is to specifically identify the contents of each of the bottles.
Solubility in water can not tell us exactly what liquid is which substance. For instance, trans-1,2-dichloroethylene, cis-1,2-dichloroethylene and cyclooctane are all insoluble in water. The fact that they do not dissolve in water does not tell us which liquid is which compound.
Even though acetic acid is miscible with water, it is not a conclusive prove that the liquid is acetic acid since other polar organic compounds are also miscible in water.
It is only by determining the boiling point of each substance that I can conclusively identify the contents of each bottle since boiling point is an intrinsic property of substances.
Answer:
Pollination is the act of transferring pollen grains from the male anther of a flower to the female stigma. The goal of every living organism, including plants, is to create offspring for the next generation. One of the ways that plants can produce offspring is by making seeds.
Explanation:
hoped it helped
Answer: The de broglie wavelength is
.
Explanation:
Calculate
as follows.

where,
h = plank's constant = 
p = momentum = 
Putting the values in the formula as follows.

=
= 
Thus, the de broglie wavelength is
.