1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sav [38]
3 years ago
14

Two bodies, one hot and the other cold kept in vacuum.what will happen to the tempreture of bodies after some time.

Physics
1 answer:
Dovator [93]3 years ago
7 0
Hot body will lose heat from it, and that heat will goes out from it through radiation, so it's temperature will decrease after some time.

In same manner, cold body will take the heat, and it's temperature will increase

Hope this helps!
You might be interested in
Which of the statements concerning light are true? The speed of light is the same no matter what material it is traveling throug
wel

Answer:

The statements that are true concerning light are the last three statements:

  • Its propagation direction is perpendicular to both the electric field and the magnetic field.
  • It moves at a constant speed through a vacuum.
  • The speed of light in matter is less than the speed of light in a vacuum.

Explanation:

<em>Light</em> is <em>electromagnetic waves.  </em>

The properties of the electromagnetic waves were established by James Clerk Maxwell.

They included that they are the result of the oscillation of a <em>magnetic field </em>in phase with an <em>electric field</em> which are always is always <em>perpendicular</em> to each other.

Also, the electromagnetic waves propagate at right-angles to the direction of both the magnetic and the electric field,  meaning that they are a type of transverse wave.

Thus, the second statement (<em>"Its propagation direction is parallel to both the electric field and the magnetic field"</em>) is false, and the fourth statement ("Its propagation direction is perpendicular to both the electric field and the magnetic field") is true.

On the other hand, it is a postulate of the special theory of relativity that the speed of light is a constant (absolute value) in vacuum: nothing can travel faster than what light travels in vacuum. Thus, the fifth statement, <em>"It moves at a constant speed through a vacuum"</em> is true.

About the speed of light in matter, it is always less than the speed of light in vacuum. Thus, the first statement, "<em>the speed of light is the same no matter what material it is traveling through</em>", and the third statement "<em>the speed of light in matter is greater than the speed of light in a vacuum"</em> are false; while the last statement, "<em>the speed of light in matter is less than the speed of light in a vacuum</em>" is true.

The explanation on why the speed of light is less in a medium than in vacuum is related with the fact that at nanoscopic level the waves suffer polarization which means deviations from the straighi path, which makes that the net straight propagation is slower.

8 0
4 years ago
Two coils close to each other have a mutual inductance of 32 mH. If the current in one coil decays according to I=I0e−αt, where
fiasKO [112]

The emf induced in the second coil is given by:

V = -M(di/dt)

V = emf, M = mutual indutance, di/dt = change of current in the first coil over time

The current in the first coil is given by:

i = i₀e^{-at}

i₀ = 5.0A, a = 2.0×10³s⁻¹

i = 5.0e^(-2.0×10³t)

Calculate di/dt by differentiating i with respect to t.

di/dt = -1.0×10⁴e^(-2.0×10³t)

Calculate a general formula for V. Givens:

M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)

Plug in and solve for V:

V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))

V = 320e^(-2.0×10³t)

We want to find the induced emf right after the current starts to decay. Plug in t = 0s:

V = 320e^(-2.0×10³(0))

V = 320e^0

V = 320 volts

We want to find the induced emf at t = 1.0×10⁻³s:

V = 320e^(-2.0×10³(1.0×10⁻³))

V = 43 volts

3 0
3 years ago
What effect would decreasing the distance between objects have on their gravitational attraction to each other?
Lady_Fox [76]
Decreasing the distance between two objects having a considerable mass would increase the attraction on gravitation. The reverse is true that if you separate or inrease the objects distance would substantially decrease their gravitational attraction. Most object in our planet is held by its gravitational force towards it's center.
5 0
3 years ago
Read 2 more answers
If you apply an equal force to a larger mass, it will take longer to accelerate. <br> Tru or false
Makovka662 [10]

Answer:

true

Explication:

The acceleration of an object depends on the mass of the object, and the amount of force applied

5 0
3 years ago
Calculate the period of a spring if it has a mass of 5 kg and a spring constant of 6 N/m
otez555 [7]

Answer: The period of a spring if it has a mass of 5 kg and a spring constant of 6 N/m is 5.73 sec.

Explanation:

Given: Mass = 5 kg

Spring constant = 6 N/m

Formula used to calculate period is as follows.

T = 2 \pi \sqrt\frac{m}{k}

where,

T = period

m = mass

k = spring constant

Substitute the values into above formula as follows.

T = 2 \pi \sqrt\frac{m}{k}\\= 2 \times 3.14 \times \sqrt\frac{5}{6}\\= 5.73 s

Thus, we can conclude that the period of a spring if it has a mass of 5 kg and a spring constant of 6 N/m is 5.73 sec.

5 0
3 years ago
Other questions:
  • A spherical balloon is 40 ft in diameter and surrounded by air at 60°F and 29.92 in Hg abs.(a) If the balloon is filled with hyd
    6·2 answers
  • The total amount of energy in a closed system stays the same. t/f
    8·1 answer
  • suppose the spring in the sample problem is replaced with a spring that stretches 36 cm from its equilibrium position
    14·1 answer
  • A man drops a rock into a well. (a) the man hears the sound of the splash 2.90 s after he releases the rock from rest. the speed
    7·1 answer
  • In the equilibrium position, the 30-kg cylinder causes a static defl ection of 50 mm in the coiled spring. If the cylinder is de
    6·1 answer
  • What is the magnitude of the emf induced in the secondary winding at the instant that the current in the solenoid is 3.2 A
    15·1 answer
  • which of the following best represent positive self-talk A. "I'm making progress". B. "its just not my day". "I've tried. I just
    12·1 answer
  • What is not changed when work is done by a machine?
    11·2 answers
  • The period of a simple pendulum is 3.5 s. The length of the pendulum is doubled. What is the period T of the longer pendulum?
    10·1 answer
  • Calculate the man’s mass. (Use PE = m × g × h, where g = 9.8 N/kg.)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!