1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DochEvi [55]
3 years ago
10

When is the next total solar eclipse in north america

Physics
1 answer:
matrenka [14]3 years ago
5 0

April 8, 2024

The path of totality will cross Mexico, the USA, and Canada.

You might be interested in
An emergency vehicle blowing its siren is moving
Georgia [21]

The frequency produced by the siren is 631.12 Hz

<h3>Doppler effect</h3>

The variation in frequency when a source of sound moves relative to an observer is determined by the doppler effect.

<h3>Frequency of observer</h3>

So, the frequency of the observer  f' = (v ± v')f/(v ± v") where

f' = 590 Hz

f = frequency of source or siren ,

v = speed of sound = 330 m/s,

v' = speed of observer = 0 m/s (since you are stationary) and

v" = speed of source = 23 m/s

Since the source moves away from the detector, the sign in the denominator is positive and v' = 0 m/s

So, f' = (v + 0)f/(v + v")

f' = vf/(v + v")

Since, we require the frequency of the source, make f subject of the formula, we have

<h3>Frequency of siren</h3>

f = (v + v")f'/v

Substituting the values of the variables into the equation, we have

f = (v + v")f'/v

f' = (330 m/s + 23 m/s)  × 590 Hz/330 m/s

f' = 353 m/s × 590 Hz/330 m/s

f' = 208270 m/sHz/330 m/s

f' = 631.12 Hz

The frequency produced by the siren is 631.12 Hz

Learn more about doppler effect here:

brainly.com/question/2169203

5 0
2 years ago
What are simple machines please?
lubasha [3.4K]

A basic mechanical device that is used for applying a force.

Examples are: inclined plane, lever, wedge, wheel and axle, pulley, and screw...Hope this helps, have a BLESSED and wonderful day!

5 0
3 years ago
Read 2 more answers
A transformer has two sets of coils, the primary with N1 = 160 turns and the secondary with N2 = 1400 turns. The input rms volta
vovikov84 [41]

To solve the problem it is necessary to apply the concepts related to the voltage in a coil, through the percentage relationship that exists between the voltage and the number of turns it has.

So things our data are given by

N_1 = 160

N_2 = 1400

\Delta V_{1rms} = 62V

PART A) Since it is a system in equilibrium the relationship between the two transformers would be given by

\frac{N_1}{N_2} = \frac{\Delta V_{1rms}}{\Delta V_{2rms}}

So the voltage for transformer 2 would be given by,

\Delta V_{2rms} = \frac{N_2}{N_1} \Delta V_{1rms}

PART B) To express the number value we proceed to replace with the previously given values, that is to say

\Delta V_{2rms} = \frac{N_1}{N_2} \Delta V_{1rms}

\Delta V_{2rms} = \frac{1400}{160} 62V

\Delta V_{2rms} = 1446.66V

7 0
3 years ago
Both the lens and the cornea of the eye have a primary function of
3241004551 [841]

Answer: B. bending light

Explanation:

The phenomenom of vision in human eye is thanks to refraction (when light changes its direction as it passes through one medium to another), and this is what the cornea and the lens do.

When the ray of light encounters the eye, the first thing it finds is the <u>cornea</u>, which<u> bends this ray and begins to form an image</u>, then light passes through the <u>pupil</u>, which is in charge of regulating the amount of light that enters in the eye.  

After light travels through pupil it passes through the <u>lens</u>, where <u>the rays of light change the direction again in order to focus the formed image on the retina. </u>

At this point it is important to note the formed image is downward, then the retina transforms light into electrical impulses that are sent to the brain through the optic nerve and finally the brain interprets these messages, and forms a right upward image.

In the image attached these parts can be seen.

6 0
3 years ago
The law of conservation of momentum states that the total momentum of interacting objects does not change . This means the total
pickupchik [31]

Answer:

The momentum of an object is equal to the product of its mass and its velocity.

Explanation:

Consider an object of mass m travelling at a velocity \vec{v}. The momentum \vec{p} of this object would be:

\vec{p} = m \cdot \vec{v}.

For the law of conservation of momentum, consider two objects: object \rm a and object \rm b. Assume that these two objects collided with each other.

  • Let m_{\rm a} and m_{\rm b} denote the mass of the two objects.
  • Let \vec{v}_{\rm a}(\text{initial}) and \vec{v}_{\rm b}(\text{initial}) denote the velocity of the two object right before the interaction.
  • Let \vec{v}_{\rm a}(\text{final}) and \vec{v}_{\rm b}(\text{final}) denote the velocity of the two objects right after the interaction.
  • The momentum of the two objects right before the collision would be m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) and m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial}), respectively.
  • The momentum of the two objects right after the collision would be m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) and m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final}), respectively.

The sum of the momentum of the two objects would be:

  • m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial}) right before the collision, and
  • m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final}) right after the collision.

Assume that the system of these two objects is isolated. By the law of conservation of momentum, the sum of the momentum of these two objects should be the same before and after the collision. That is:

m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial}) = m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final}).

4 0
3 years ago
Other questions:
  • A motorist is traveling at 20 m/s. He is 60 m from a stoplight when he sees it turn yellow. Is reaction time, before stepping on
    7·1 answer
  • Which of the following properties could be described as a force that pushes charges along?
    8·1 answer
  • If you exert a force of 51 n to walk 6 m up a flight of stairs in 9 seconds, how much power do you use? answer in units of w.
    15·1 answer
  • a bullet of mass 4g when fired with a velocity of 50m/s can enter a wall upto a depth of 10cm how much will be the average resis
    6·1 answer
  • Convert 2536 mm/min to m/s. Use dimensional analysis.
    14·1 answer
  • which type of geoscientist interprets data from certain instruments to help detect earthquakes and identify fault lines
    15·2 answers
  • Susan was traveling in an airplane. She looked out of a window in the airplane and saw clouds in the sky. Why could Susan see cl
    9·1 answer
  • Find the ratio of the Coulomb electric force Fe to the gravitational force Fo between two
    10·1 answer
  • Can you solve the issue
    12·1 answer
  • The pressure at the bottom of a jug filled with water does NOT depend on the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!