Answer:
θ=180°
Explanation:
The problem says that the vector product of A and B is in the +z-direction, and that the vector A is in the -x-direction. Since vector B has no x-component, and is perpendicular to the z-axis (as A and B are both perpendicular to their vector product), vector B has to be in the y-axis.
Using the right hand rule for vector product, we can test the two possible cases:
- If vector B is in the +y-axis, the product AxB should be in the -z-axis. Since it is in the +z-axis, this is not correct.
- If vector B is in the -y-axis, the product AxB should be in the +z-axis. This is the correct option.
Now, the problem says that the angle θ is measured from the +y-direction to the +z-direction. This means that the -y-direction has an angle of 180° (half turn).
Electricity is always going to take the path of least resistance to ground. The rubber in your shoes is not a conductor of electricity, therefore you are not completing the circuit and you don't get shocked. Your bare feet, on the other hand ARE conductors of electricity, so when you hold the wire, you complete the circuit and become the path of least resistance to ground... ZAP!
I think it is C. I hope I helped.
Answer:
0.0133A
Explanation:
Since we have two sections, for the Inductor region there would be a current . In the case of resistance 2, it will cross a current
Defined this we proceed to obtain our equations,
For ,
For ,
The current in the entire battery is equivalent to,
Our values are,
Replacing in the current for t= 0.4m/s
To determine the displacement, since we are given the potential energy, we use the equation for potential energy. For a spring, it is one-half the product of the spring constant and the square of the displacement. We do as follows:
PE = kx^2/2
5 Nm = 50N/m (x^2)
x = 0.32 m
Therefore, the displacement would be 0.32 m.