Using the conservation of momentum,
ma*va1 + mb*vb1 = ma*va2 + mb*vb2
Let:
ma = mass of the ball
va = velocity of the ball
mb = mass of the man
vb = velocity of the man
The subscript 1 is known as initials while 2 is for finals.
Before the man throws the ball, he starts at rest, meaning the initial velocity of the ball and the initial velocity of the man are zero. So
0 = ma*va2 + mb*vb2
Given ma = 10 kg; va = 20 m/s; mb = 90 kg; vb is unknown, therefore
-(mb*vb2) = ma*va2
vb2 = -(ma*va2)/mb2 = -(10*20)/90 = -2.22 m/s
Notice that his velocity is negative because when he finally throws the ball (say to the right), he moves at the opposite direction (that is to the left) on which he stands on the frictionless surface.
That would be the dump truck. Momentum depends on how heavy a certain object is in motion. The more weight it has the harder it is to stop.
Answer:
a parachute falling to the ground is uniform
Answer:
A radio telescope helped the astronomers discover the CMB.
Explanation:
- Penzias and Wilson while experimenting with a radio telescope in 1964, accidentally discovered the radiation that exists universally also known as the CMB.
- This was used to support the "Big Bang Theory" and not the "Steady State Theory"
- CMB is the faint cosmic radiation that fills up the universe. It provides important data for understanding early universe.
- This data tells us about the composition of the universe and its age which raises new questions about the universe.