1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
3 years ago
14

In ‘static equilibrium' the force pushing out against the inward pull of gravity is

Physics
1 answer:
Gemiola [76]3 years ago
4 0
If you are referring to stars, the answer would then be pressure from the nuclear reactions 

The thermal pressure that pushes outward and against the pull of gravity in a star is caused by the nuclear reactions that is happening within the stars core. A lot of energy is released during these reactions which produce thermal pressure. The pressure then pushes outward.
You might be interested in
A circuit has resistors R 1 = 468 Ω and R 2 = 125 Ω R1=468 Ω and R2=125 Ω , and two batteries V 1 = 12.0 V and V 2 = 3.00 V V1=1
Greeley [361]

Answer:

0.0192A

Explanation:

Since, the reading of the galvanometer is 0 A, the voltage across the resistance R will be:

Step 1

VR = V2

VR = 3.00v

Step 2

Calculating the current through the resistance R as below,

IR = V1 - V2 /R1

IR = 12 - 3 /468

IR =0.0192A

7 0
3 years ago
A 125-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope a
lbvjy [14]

Answer:

201.6 N

Explanation:

m = mass of disk shaped merry-go-round = 125 kg

r = radius of the disk = 1.50 m

w₀ = Initial angular speed = 0 rad/s

w = final angular speed = 0.700 rev/s = (0.700) (2π) rad/s = 4.296 rad/s

t = time interval = 2 s

α = Angular acceleration

Using the equation

w = w₀ + α t

4.296 = 0 + 2α

α = 2.15 rad/s²

I = moment of inertia of merry-go-round

Moment of inertia of merry-go-round is given as  

I = (0.5) m r² = (0.5) (125) (1.50)² = 140.625 kgm²

F = constant force applied

Torque equation for the merry-go-round is given as

r F = I α

(1.50) F = (140.625) (2.15)

F = 201.6 N

4 0
3 years ago
A football player kicks a football downfield. The height of the football increases until it reaches a maximum height of 15 yards
Trava [24]

Answer:

kick 1 has travelled 15 + 15 = 30 yards before hitting the ground

so kick 2 travels 25 + 25 = 50 yards before hitting the ground

first kick reached 8 yards and 2nd kick reached 20 yards  

Explanation:

1st kick travelled 15 yards to reach maximum height of 8 yards

so, it has travelled 15 + 15 = 30 yards before hitting the ground

2nd kick is given by the equation

y (x) = -0.032x(x - 50)

Y = 1.6 X - 0.032x^2

we know that maximum height occurs is given as

x = -\frac{b}{2a}

y =- \frac{1.6}{2(-0.032)} = 25

and maximum height is

y = 1.6\times 25 - 0.032\times 25^2

y = 20

so kick 2 travels 25 + 25 = 50 yards before hitting the ground

first kick reached 8 yards and 2nd kick reached 20 yards

8 0
3 years ago
Read 2 more answers
Neutron stars are extremely dense objects that are formed from the remnants of supernova explosions. Many rotate very rapidly. S
Alja [10]

Answer:

16294 rad/s

Explanation:

Given that

M(ns) = 2M(s), where

M(s) = 1.99*10^30 kg, so that

M(ns) = 3.98*10^30 kg

Again, R(ns) = 10 km

Using the law of gravitation, the force between the Neutron star and the sun is..

F = G.M(ns).M(s) / R²(ns), where

G = 6.67*10^-11, gravitational constant

Again, centripetal force of the neutron star is given as

F = M(ns).v² / R(ns)

Recall that v = wR(ns), so that

F = M(s).w².R(ns)

For a circular motion, it's been established that the centripetal force is equal to the gravitational force, hence

F = F

G.M(ns).M(s) / R²(ns) = M(s).w².R(ns)

Making W subject of formula, we have

w = √[{G.M(ns).M(s) / R²(ns)} / {M(s).R(ns)}]

w = √[{G.M(ns)} / {R³(ns)}]

w = √[(6.67*10^-11 * 3.98*10^30) / 10000³]

w = √[2.655*10^20 / 1*10^12]

w = √(2.655*10^8)

w = 16294 rad/s

7 0
3 years ago
A key falls from a bridge that is 45 m above the water. the key falls straight down and lands in a model boat traveling at a con
erastova [34]

Let the key is free falling, therefore from equation of motion

h = ut +\frac{1}{2}gt^2..

Take initial velocity, u=0, so

h = 0\times t + \frac{1}{2}g t^2= \frac{1}{2}gt^2.

h = 0\times t + \frac{1}{2}g t^2= \frac{1}{2}gt^2 \\\ t =\sqrt{\frac{2h}{g} }

As velocity moves with constant velocity of 3.5 m/s, therefore we can use formula

d= v \times t

From above substituting t,

d = v \times \sqrt{\frac{2h}{g} }.

Now substituting all the given values and g = 9.8 m/s^2, we get

d = 3.5 \ m/s \times \sqrt{\frac{2 \times 45 m}{9.8 m/s^2} } = 10.60 m.

Thus, the distance the boat was from the point of impact when the key was released is 10.60 m.

7 0
3 years ago
Other questions:
  • A sprinter is advised to reduced his speed slowly after completing his race.why
    6·1 answer
  • What is the difference in the charges on a ballon rubbed in your hair and a glass rod rubbed
    5·1 answer
  • The power needed to operate your body is about 100 watts. suppose a human body (of typical mass) could run on fusion power and c
    14·1 answer
  • Two motorcycles travel along a straight road heading due north. At t = 0 motorcycle 1 is at x = 50.0 m and moves with a constant
    13·1 answer
  • A 25kg ball is thrown into the air. when thrown it is going 10 m/s. calculate how high it travels?
    5·1 answer
  • In a parallel circuit, there is only one path for current to take. Please select the best answer from the choices provided T F
    9·1 answer
  • Describe how we know the plates once formed a supercontinent and how we know this.
    11·1 answer
  • explain the fleming left-hand rule with the diagram and what will the direction of the induced current in the figure if the magn
    9·1 answer
  • An object is approaching you while making a sound.
    5·1 answer
  • A car is traveling along a straight road at a velocity of 30m/s when its engine cuts off. For the next ten seconds, the car slow
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!