Answer:
5.0 m/s
Explanation:
The horizontal motion of the salmon is uniform, so the horizontal component of the salmon's velocity is constant and it is

where u is the initial speed and
. The horizontal distance travelled by the salmon is

where d = 1.95 m and t is the time needed to reach the final point.
Re-arranging for t,
(1)
Along the vertical direction, the equation of motion is

where:
y = 0.311 m is the final height reached by the salmon
h = 0 is the initial height
is the vertical component of the initial velocity of the salmon
is the acceleration of gravity
t is the time
Substituting t as found in eq.(1), we get the equation

and we can solve this formula for u, the initial speed of the salmon:

Frequency = 1/time period = 1/0.05 = 20s^-1.
Answer:
The value is 
Explanation:
From the question we are told
The pipe diameter at location 1 is 
The velocity at location 1 is 
The diameter at location 2 is 
Generally the area at location 1 is

=> 
=> 
=> 
Generally the area at location 1 is

=> 
=> 
Generally from continuity equation we have that

=> 
=> 
=> 
Answer:b
Explanation:
Given
mass of heavy object is 4m
mass of lighter object is m
A person pushes each block with same force F
According to Work Energy theorem Change in kinetic energy of object is equal to Work done by all the object
As launching velocity is same for both the object so heavier mass must possess greater kinetic energy . For same force heavier mass must be pushed 4 times farther than the light block .


So the correct option is b