Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components


The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components


So we have enough information to solve for the components of the acceleration vector,
and
:


The acceleration vector then has direction
where

Answer:
Action - Pulling up the train.
Reaction - Friction on the locomotive
Explanation:
Locomotive is pulling the train upwards ,
Which is the action force applied by the locomotive,
As a reaction locomotive will be pulled by the train which is the reaction of pulling
Now, considering it as a action on locomotive , friction force will act on it as a reaction upwards which will result to move it upwards.
For train action is pulling up by locomotive and reaction will be friction acting on it downwards.
Average speed = total distance / time ⇒ total distance = average speed * time
Average speed = 270 km / p hours
distance = d
hours = x
d = 270/p * x
Answer:
1531 m
Explanation:
The motion of the jet ski is an uniformly accelerated motion, so we can find the distance travelled by using the following suvat equation:

where
s is the distance
u is the initial velocity
t is the time
a is the acceleration
For the jet ski in this problem,

t = 35 s
u = 0 (it starts from rest)
Solving for s, we find the distance travelled:
