Answer:
Moment of the force is 20 N-m.
Explanation:
Given:
Force exerted by the person is, 
Distance of application of force from the point about which moment is needed is, 
Now, we know that, moment of a force 'F' about a point at a perpendicular distance of 'd' from the same point is given as the product of the force and the perpendicular distance.
Therefore, the moment of the force about the end of the claw hammer is given as:

Hence, the moment of the force exerted by the person about the end of the claw hammer is 20 N-m.
<span>Mass of the ball is m = 0.10kg
Initial speed of the Ball v = 15m/s
a. When the ball is at maximum height the velocity is 0
Momentum of ball = mass x velocity
Momentum = 0.10kg x 0 = 0
b. Getting the maximum height,
Using the conservation of energy equation KEinitial = mgh
1/2mVin^2 = mgh => h = v^2/2g
h = 15^2/2x9.8 = 11.48m => Half Height h = 5.96m
Applying the conservation of energy equation at halfway V^2 = 2gh
V = square root of (2x9.8x5.96) => V = square root of (116.816)
So the velocity at the half way V = 10.81 m/s
Momentum M = m x V => M = 0.10 x 10.81 => M = 1.081kg-m/s</span>
The acceleration and distance is related to the following expression:
y=v0*t + a*t^2/2 ; v0=0
y=44.1*100/2 = 2205m
hence, the speed will be
v=0 + a*t = 441m/s
from that height it will just be subjected to the gravitational acceleration
0=v_acc^2 -2g*y_free
y_free = v_acc^2/2g = 9922.5m
<span>y_max = y_acc+y_free = 441+9922.5 =10363.5m</span>
Answer:

Explanation:
It is given that,
Mass of Albertine, m = 60 kg
It can be assumed, the spring constant of the spring, k = 95 N/m
Compression in the spring, x = 5 m
A glass sits 19.8 m from her outstretched foot, h = 19.8 m
When she just reach the glass without knocking it over, a force of friction will also act on it. Using the conservation of energy for the spring mass system such that,




So, the coefficient of kinetic friction between the chair and the waxed floor is 0.101. Hence, this is the required solution.
Earth has its own atmosphere. That is one reason all the water that has been on Earth has been recycled through the water cycle. It never leaves Earth’s atmosphere.