Answer:
We are given the trajectory of a projectile:
y=H+xtan(θ)−g2u2x2(1+tan2(θ)),
where H is the initial height, g is the (positive) gravitational constant and u is the initial speed. Since we are looking for the maximum range we set y=0 (i.e. the projectile is on the ground). If we let L=u2/g, then
H+xtan(θ)−12Lx2(1+tan2(θ))=0
Differentiate both sides with respect to θ.
dxdθtan(θ)+xsec2(θ)−[1Lxdxdθ(1+tan2(θ))+12Lx2(2tan(θ)sec2(θ))]=0
Solving for dxdθ yields
dxdθ=xsec2(θ)[xLtan(θ)−1]tan(θ)−xL(1+tan2(θ))
This derivative is 0 when tan(θ)=Lx and hence this corresponds to a critical number θ for the range of the projectile. We should now show that the x value it corresponds to is a maximum, but I'll just assume that's the case. It pretty obvious in the setting of the problem. Finally, we replace tan(θ) with Lx in the second equation from the top and solve for x.
H+L−12Lx2−L2=0.
This leads immediately to x=L2+2LH−−−−−−−−√. The angle θ can now be found easily.
Answer:
<em><u>Basic</u></em><em><u> </u></em><em><u>units</u></em><em><u>=</u></em><em><u>those</u></em><em><u> </u></em><em><u>units</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>measurement</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>do not</u></em><em><u> </u></em><em><u>depend</u></em><em><u> </u></em><em><u>upon</u></em><em><u> </u></em><em><u>any</u></em><em><u> </u></em><em><u>other</u></em><em><u> </u></em><em><u>units</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>called</u></em><em><u> </u></em><em><u>basic</u></em><em><u> </u></em><em><u>units</u></em><em><u>.</u></em><em><u> </u></em><em><u>Example</u></em><em><u> </u></em><em><u>length</u></em><em><u>,</u></em><em><u> </u></em><em><u>mass</u></em><em><u>,</u></em><em><u> </u></em><em><u>time</u></em><em><u>,</u></em><em><u> </u></em><em><u>current</u></em><em><u> </u></em><em><u>etc</u></em><em><u>.</u></em><em><u> </u></em>
<em><u>Derived</u></em><em><u> </u></em><em><u>units</u></em><em><u>=</u></em><em><u>those</u></em><em><u> </u></em><em><u>units</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>expressed</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>terms</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>fundamental</u></em><em><u> </u></em><em><u>units</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>called</u></em><em><u> </u></em><em><u>derived</u></em><em><u> </u></em><em><u>units</u></em><em><u>.</u></em><em><u> </u></em><em><u>Example</u></em><em><u> </u></em><em><u>area</u></em><em><u>,</u></em><em><u> </u></em><em><u>volume</u></em><em><u>,</u></em><em><u> </u></em><em><u>density</u></em><em><u> </u></em><em><u>etc</u></em><em><u>.</u></em><em><u> </u></em>
Answer:12.8 ft/s
Explanation:
Given
Speed of hoop 
height of top 
Initial energy at bottom is

Where m=mass of hoop
I=moment of inertia of hoop
=angular velocity
for pure rolling 



Energy required to reach at top


Thus 512.2 m is converted energy is spent to raise the potential energy of hoop and remaining is in the form of kinetic and rotational energy

Therefore



Answer:
1.a) 1 kJ
1.b) 4 kJ
ratio 1:4
1.c) 4 times as before
2.a) 3.33 m/s2
Explanation:
1.a) bicycle's velocity =Displacement/time
=100/20 m/s
=5 m/s
bicycler's KE =1/2 *mass*(velocity)^2
=1/2*80*5^2
=1000 J = 1 kJ
1.b) bicycle's new velocity =200/20 m/s
=10 m/s
bicycler's new KE =1/2*80*10^2
=4000 J = 4 kJ
Ratio= KE 1 :KE new
= 1 :4
1.c) when bicycler's speed was doubled it increased the KE by 4 times (2^2). because In KE we consider the square of the speed , so the factor we increase the speed , the KE will get increased with the square value of it
ex : speed is triple the prior value , then the KE is as 3^2 times as before. that is 9 times
2.a) car acceleration = (20-0)/6 m/s2
= 3.33 m/s2