<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>
QUESTION)</u></h3>
Assuming that the initial velocity of the jumper is zero, on Earth any freely falling object has an acceleration of 9.8 m/s².
<em>✔ We have : a = v/Δt = ⇔ Δt = v/a </em>
- Δt = (√2xgxh)/9,8
- Δt = (14√10)/9,8
- Δt ≈ 4,5 s
In both cases less energy is required
But comparetively Mg require more energy than K
Let's see the electron configuration of Both
- [Mg]=1s²2s²2p⁶3s²=[Ne]3s²
- [K]=1s²2s²2p⁶3s²3p⁶4s¹=[Ar]4s¹
K has only one valence electron so very less ionization enthalpy so less energy required
Mg has 2 so more IE hence more energy required
U can always just do the classic roller coaster going up an incline and create some sort of story from that.
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.