1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kozerog [31]
3 years ago
14

Which insurance would contradict the big bang theory

Physics
1 answer:
n200080 [17]3 years ago
7 0
The Big Bang theory suggests that the universe is constantly expanding and that stars, galaxies and other entities are moving away from each other. If there were a galaxy moving closer to earth then that would contradict the Big Bang theory since the entities should be moving away from earth and from each other.
You might be interested in
Why does psychics need a electrical current
nignag [31]

Answer:

Because Electrical Current is the most important thing about psychics

Explanation:

;p

3 0
3 years ago
In an inkjet printer, letters and images are created by squirting drops of ink horizontally at a sheet of paper from a rapidly m
Serga [27]

Answer:

q = 6.48 \times 10^{-14} C

Explanation:

Deflection in the drop is due to electric field force

so we will have

F = qE

acceleration of the drop is given as

a = \frac{qE}{m}

a = \frac{q(7.75 \times 10^4)}{1.00 \times 10^{-11}}

a = 7.75 \times 10^{15} q

now we know that time to cross the plates is given as

t = \frac{D}{v}

t = \frac{0.02}{18}

t = 1.11 \times 10^{-3} s

now the deflection is given as

d = \frac{1}{2}at^2

0.310 \times 10^{-3} = \frac{1}{2}(7.75 \times 10^{15} q)(1.11 \times 10^{-3})^2

0.310 \times 10^{-3} = 4.78 \times 10^9 q

q = 6.48 \times 10^{-14} C

5 0
3 years ago
A brick is resting on a smooth wooden board that is at a 30° angle. What is one way to overcome the static friction that is hold
lubasha [3.4K]

Answer:

to overcome the out of friction we must increase the angle of the plane

Explanation:

To answer this exercise, let's propose the solution of the problem, write Newton's second law. We define a coordinate system where the x axis is parallel to the plane and the other axis is perpendicular to the plane.

X axis

       fr - Wₓ = m    a                      (1)

Y axis  

       N- W_{y} = 0

       N = W_{y}

let's use trigonometry to find the components of the weight

        sin θ = Wₓ / W

        cos θ = W_{y} / W

        Wₓ = W sin θ

        W_{y} = W cos θ

the friction force has the formula

         fr = μ N

         fr = μ Wy

         fr = μ mg cos θ

from equation 1

at the point where the force equals the maximum friction force

in this case the block is still still so a = 0

           F = fr

           F = (μ  mg) cos θ

We can see that the quantities in parentheses with constants, so as the angle increases, the applied force must be less.

This is the force that balances the friction force, any force slightly greater than F initiates the movement.

Consequently, to overcome the out of friction we must increase the angle of the plane

the correct answer is to increase the angle of the plane

4 0
3 years ago
1) A boy drags a wooden crate with a mass of 20 kg, a distance of 12 m, across a rough level floor at a constant speed of 1.5 m/
mojhsa [17]

Answer: a) 49.560 and 21.13 b) i) 50 N, ii) 196 N iii) 196 N iv) 47.685 N

c) i) 594.72 ii) 0 iii) 0 iv) 0

d) 594.72

Explanation: question a)

The force is inclined at an angle of 25° to the horizontal

The horizontal component of force = 50 cos 25° = 49.560 N

The vertical component of force = 50 sin 30°= 21.130N

Question b)

i) according to the question applied force is 50 N

ii) if g = 9.8m/s², w=mg where m = mass of object = 20kg hence weight = 20* 9.8 = 196 N

iii) the normal force is the force the floor exerts on the body as a result of the weight of the object.

Normal reaction R = W = mg, we already deduced that w = mg, hence R = 196 N.

iv) according to newton's laws of motion

F - Fr = ma

F = applied force = horizontal component of force = 49.560 N.

We need to get the acceleration (a) by using Newton laws of motion before we can be able to compute the frictional force..

The body started from rest hence initial velocity u = 0

Final velocity v = 1.5m/s distance covered (s) = 12m

v ² = u² + 2as

But u = 0

v² = 2as

1.5² = 2(a) * 12

2.25 = 24a

a = 2.25/24 = 0.09735m/s²

From F - Fr = ma

49.560 - Fr = 20 * 0.09735

49.560 - Fr = 1.875

Fr = 49.560 - 1.875

Fr = 47.685 N

Question c)

i) The applied force = 49.560 N, distance covered = 12m

Work done = force * distance

Work done = 49.560 * 12

Work done = 594.72 J

ii) the weight of the object does not make the object move a distance, hence work done = 0 ( since distance covered is 0)

iii) the normal force is the same thing as the weight and they did not cover any distance hence work done is zero.

iv) the frictional force does not cover any distance, hence work done is zero.

Question d)

The total work done = work done by applied force + work done by weight + work done by normal reaction + work done by frictional force.

Total work done = 594.72 + 0 + 0 + 0 = 594.72 J

8 0
3 years ago
Argon gas enters steadily an adiabatic turbine at 900 kPa and 450C with a velocity of 80 m/s and leaves at 150 kPa with a veloc
Crazy boy [7]

Answer:

Temperature at the exit = 267.3 C

Explanation:

For the steady energy flow through a control volume, the power output is given as

W_{out}= -m_{f}(h_{2}-h_{1} + \frac{v_{2}^{2}}{2} - \frac{v_{1}^{2}}{2})

Inlet area of the turbine = 60cm^{2}= 0.006m^{2}

To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.

Assuming Argon behaves as an Ideal gas, we have the specific volume v_{1}

as

v_{1}=\frac{RT_{1}}{P_{1}}=\frac{0.2081\times723}{900}=0.1672m^{3}/kg

m_{f}=\frac{1}{v_{1}}\times A_{1}V_{1} = \frac{1}{0.1672}\times(0.006)(80)=2.871kg/sec

for Ideal gasses, the enthalpy change can be calculated using the formula

h_{2}-h_{1}=C_{p}(T_{2}-T_{1})

hence we have

W_{out}= -m_{f}((C_{p}(T_{2}-T_{1}) + \frac{v_{2}^{2}}{2} - \frac{v_{1}^{2}}{2})

250= -2.871((0.5203(T_{2}-450) + \frac{150^{2}}{2\times 1000} - \frac{80^{2}}{2\times 1000})

<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>

evaluating the above equation, we have T_{2}=267.3C

Hence, the temperature at the exit = 267.3 C

5 0
3 years ago
Other questions:
  • Use the IUPAC nomenclature rules to give the name for this compound - SiO2
    13·2 answers
  • Compared to oceanic crust, continental crust is generally
    10·1 answer
  • The temperature, T, of a gas is jointly proportional to the pressure P of the gas and the volume V occupied by the gas. Use C as
    12·1 answer
  • Elabora una tabla, como la del ejemplo, con los resultados obtenidos en los test que desarrollaste en actividades anteriores. Lu
    9·1 answer
  • Practice with Density
    6·2 answers
  • What is the SI unit for momentum?
    6·2 answers
  • Can someone help me with this, please? I have the answer but I need help with why the answer is that :(
    15·1 answer
  • It takes 29.53 days for the Moon to rotate around Earth. What would happen if the Moon does not rotate or rotates faster than it
    6·1 answer
  • True or False. You do not need to stretch each side of your body.
    13·2 answers
  • Un coche de unos 500 kg viaja a 90 km/h. Percibe un obstáculo y debe frenar a tope. Por las marcas del suelo se sabe que el espa
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!