Answer
given,
L(t) = 10 - 3.5 t
mass of particle = 2 Kg
radius of the circle = 3.1 m
a) torque
τ = 
τ = 
τ = -3.5 N.m
Particle rotates clockwise as i look down the plane. Hence, its angular velocity is downward.
L decreases the angular acceleration upward. so, net torque is upward.
b) Moment of inertia of the particle
I = m R^2
I = 2 x 3.1²
I = 19.22 kg.m²
L = I ω
ω = 
ω = 
ω = 
A = 0.52 rad/s B = -0.182 rad/s²
Answer:
A
Explanation:
Kinetic energy must be moving. Potential energy has the ability to move but is not doing so at the moment.
A is likely the answer. But there's lots involved in that kind of motion.
B If the ball is elevated, it implies it is not moving yet. It has potential energy.
C Again, the spring is compressed. It will push something when it moves, but it is not moving yet.
D The load gun's bullet is not moving. It's still potential energy.
E. The mouse trap is set, but it is not moving. When the mouse eats the bait then it's potential energy will transform into kinetic energy.
Recall the equation for magnetic force:
F = qv x B *x is cross product, not separate variable!
If the magnetic field points towards N and you throw E, then the magnetic force would point up, or out of the page. Use the right-hand rule. You point your finger towards the direction of the object, and curl your finger to the magnetic field. Your thumb is the direction of the magnetic force.
Hope this helps!