Answer: I actually need the same answer
Explanation:
Answer:
a) 6.95 m/s
b) 1.42 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²

a) The vertical speed when it leaves the ground. is 6.95 m/s

Time taken to reach the maximum height is 0.71 seconds

Time taken to reach the ground from the maximum height is 0.71 seconds
b) Time it stayed in the air is 0.71+0.71 = 1.42 seconds
<span>the gravational potential energy of anything on the ground is zero. When calculating potential energy you take height in meters and multiply it by the mass of the object in kilograms and the acceleration of gravity to get a new unit called Joules.
Any object at ground level has a potential energy of zero newtons becuase anything multiplied by zero is zero. An object with mass of 54 kg, 4 meters above the ground has a gravitatinal potential energy of 2116.8 Joules.</span>
Answer:
t = 1.77 s
Explanation:
The equation of a traveling wave is
y = A sin [2π (x /λ -t /T)]
where A is the oscillation amplitude, λ the wavelength and T the period
the speed of the wave is constant and is given by
v = λ f
Where the frequency and period are related
f = 1 / T
we substitute
v = λ / T
let's develop the initial equation
y = A sin [(2π / λ) x - (2π / T) t +Ф]
where Ф is a phase constant given by the initial conditions
the equation given in the problem is
y = 5.26 sin (1.65 x - 4.64 t + 1.33)
if we compare the terms of the two equations
2π /λ = 1.65
λ = 2π / 1.65
λ = 3.81 m
2π / T = 4.64
T = 2π / 4.64
T = 1.35 s
we seek the speed of the wave
v = 3.81 / 1.35
v = 2.82 m / s
Since this speed is constant, we use the uniformly moving ratios
v = d / t
t = d / v
t = 5 / 2.82
t = 1.77 s