Here's a formula that's simple and useful, and if you're really in
high school physics, I'd be surprised if you haven't see it before.
This one is so simple and useful that I'd suggest memorizing it,
so it's always in your toolbox.
This formula tells how far an object travels in how much time,
when it's accelerating:
Distance = (1/2 acceleration) x (Time²).
D = 1/2 A T²
For your student who dropped an object out of the window,
Distance = 19.6 m
Acceleration = gravity = 9.8 m/s²
D = 1/2 G T²
19.6 = 4.9 T²
Divide each side by 4.9 : 4 = T²
Square root each side: 2 = T
When an object is dropped in Earth gravity,
it takes 2 seconds to fall the first 19.6 meters.
Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N
Answer:
Explanation:
Velocity of sound in air at 20 degree = 343 m/s
Velocity of sound in water at 20 degree = 1470 m/s
Time taken in to and fro movement in air
=( 2 x 10) / 343 = 0.0583 s
Rest of the time is
.171 - .0583 = .1127 s
This time is taken to cover distance in water. If d be the depth of lake
2d / velocity = time taken
2 d / 1470 = .1127
d = 82.83 m
Answer:
<h2>66.67 km/hr</h2>
Explanation:
The average velocity of the car can be found by using the formula

d is the distance
t is the time taken
From the question we have

We have the final answer as
<h3>66.67 km/hr</h3>
Hope this helps you