Answer:
The answer is a controlled variable stays the same throughout an experiment, but a responding variable changes
Explanation:
just did it on apex
Its larger and if u where wondering to positive ions are smaller
The mass of the bird is 0.32 kg.
<u>Explanation:</u>
Gravitational potential energy, the energy exhibited by an object at rest due to the influence of gravitational force. So the increase in distance of object from the surface of earth leads to increase in the gravitational potential energy. Thus,
![\text {Gravitational potential energy}=m \times \text { Acceleration } \times \text { Distance of bird from bottom }](https://tex.z-dn.net/?f=%5Ctext%20%7BGravitational%20potential%20energy%7D%3Dm%20%5Ctimes%20%5Ctext%20%7B%20Acceleration%20%7D%20%5Ctimes%20%5Ctext%20%7B%20Distance%20of%20bird%20from%20bottom%20%7D)
So, as the gravitational potential energy is given as 2033 J and the position of bird placed on the tall tower is 639 m away from the bottom, then the mass (m) of the bird can be found as below.
![m o f \text { bird }=\frac{\text {Gravitational potential energy}}{a \times \text {Distance}}=\frac{2033}{9.8 \times 639}=\frac{2033}{6262.2}](https://tex.z-dn.net/?f=m%20o%20f%20%5Ctext%20%7B%20bird%20%7D%3D%5Cfrac%7B%5Ctext%20%7BGravitational%20potential%20energy%7D%7D%7Ba%20%5Ctimes%20%5Ctext%20%7BDistance%7D%7D%3D%5Cfrac%7B2033%7D%7B9.8%20%5Ctimes%20639%7D%3D%5Cfrac%7B2033%7D%7B6262.2%7D)
So, finally we get the bird's mass as,
m of bird = 0.32 kg
Answer:
The answer is "
"
Explanation:
For point a:
Energy balance equation:
![\frac{dU}{dt}= Q-Wm_ih_i-m_eh_e\\\\](https://tex.z-dn.net/?f=%5Cfrac%7BdU%7D%7Bdt%7D%3D%20Q-Wm_ih_i-m_eh_e%5C%5C%5C%5C)
![W=0\\\\Q=0\\\\m_e=0](https://tex.z-dn.net/?f=W%3D0%5C%5C%5C%5CQ%3D0%5C%5C%5C%5Cm_e%3D0)
From the above equation:
![\frac{dU}{dt}=0-0+m_ih_i-0\\\\\Delta U=\int^{2}_{1}m_ih_idt\\\\](https://tex.z-dn.net/?f=%5Cfrac%7BdU%7D%7Bdt%7D%3D0-0%2Bm_ih_i-0%5C%5C%5C%5C%5CDelta%20U%3D%5Cint%5E%7B2%7D_%7B1%7Dm_ih_idt%5C%5C%5C%5C)
because the rate of air entering the tank that is
constant.
Since the tank was initially empty and the inlet is constant hence,
Interpolate the enthalpy between
. The surrounding air
temperature:
![T_1= 25^{\circ}\ C\ (298.15 \ K)\\\\\frac{h_{300 \ K}-h_{295\ K}}{300-295}= \frac{h_{300 \ K}-h_{1}}{300-295.15}](https://tex.z-dn.net/?f=T_1%3D%2025%5E%7B%5Ccirc%7D%5C%20C%5C%20%28298.15%20%5C%20K%29%5C%5C%5C%5C%5Cfrac%7Bh_%7B300%20%5C%20K%7D-h_%7B295%5C%20K%7D%7D%7B300-295%7D%3D%20%5Cfrac%7Bh_%7B300%20%5C%20K%7D-h_%7B1%7D%7D%7B300-295.15%7D)
Substituting the value from ideal gas:
![\frac{300.19-295.17}{300-295}=\frac{300.19-h_{i}}{300-298.15}\\\\h_i= 298.332 \ \frac{kJ}{kg}\\\\Now,\\\\h_i=u_2\\\\u_2=h_i=298.33\ \frac{kJ}{kg}](https://tex.z-dn.net/?f=%5Cfrac%7B300.19-295.17%7D%7B300-295%7D%3D%5Cfrac%7B300.19-h_%7Bi%7D%7D%7B300-298.15%7D%5C%5C%5C%5Ch_i%3D%20298.332%20%5C%20%5Cfrac%7BkJ%7D%7Bkg%7D%5C%5C%5C%5CNow%2C%5C%5C%5C%5Ch_i%3Du_2%5C%5C%5C%5Cu_2%3Dh_i%3D298.33%5C%20%5Cfrac%7BkJ%7D%7Bkg%7D)
Follow the ideal gas table.
The
and between temperature
Interpolate
![\frac{420-410}{u_{240\ k} -u_{410\ k}}=\frac{420-T_2}{u_{420 k}-u_2}](https://tex.z-dn.net/?f=%5Cfrac%7B420-410%7D%7Bu_%7B240%5C%20k%7D%20-u_%7B410%5C%20k%7D%7D%3D%5Cfrac%7B420-T_2%7D%7Bu_%7B420%20k%7D-u_2%7D)
Substitute values from the table.
For point b:
Consider the ideal gas equation. therefore, p is pressure, V is the volume, m is mass of gas.
(M is the molar mass of the gas that is
and R is gas constant), and T is the temperature.
![n=\frac{pV}{TR}\\\\](https://tex.z-dn.net/?f=n%3D%5Cfrac%7BpV%7D%7BTR%7D%5C%5C%5C%5C)
![=\frac{(1.01 \times 10^5 \ Pa) \times (10\ L) (\frac{10^{-3} \ m^3}{1\ L})}{(416.74 K) (\frac{8.314 \frac{J}{mol.k} }{2897\ \frac{kg}{mol})}}\\\\=8.36\ g\\\\](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%281.01%20%5Ctimes%2010%5E5%20%5C%20Pa%29%20%5Ctimes%20%2810%5C%20L%29%20%28%5Cfrac%7B10%5E%7B-3%7D%20%5C%20m%5E3%7D%7B1%5C%20L%7D%29%7D%7B%28416.74%20K%29%20%28%5Cfrac%7B8.314%20%5Cfrac%7BJ%7D%7Bmol.k%7D%20%7D%7B2897%5C%20%5Cfrac%7Bkg%7D%7Bmol%7D%29%7D%7D%5C%5C%5C%5C%3D8.36%5C%20g%5C%5C%5C%5C)
For point c:
Entropy is given by the following formula:
![\Delta S = mC_v \In \frac{T_2}{T_1}\\\\=0.00836 \ kg \times 1.005 \times 10^{3} \In (\frac{416.74\ K}{298.15\ K})\\\\=2.77 \ \frac{J}{K}](https://tex.z-dn.net/?f=%5CDelta%20S%20%3D%20mC_v%20%5CIn%20%5Cfrac%7BT_2%7D%7BT_1%7D%5C%5C%5C%5C%3D0.00836%20%5C%20kg%20%5Ctimes%201.005%20%5Ctimes%2010%5E%7B3%7D%20%5CIn%20%28%5Cfrac%7B416.74%5C%20K%7D%7B298.15%5C%20K%7D%29%5C%5C%5C%5C%3D2.77%20%5C%20%5Cfrac%7BJ%7D%7BK%7D)
<span>it will be changed by changing the medium of the wave</span>