Answer:
See explanation and image attached
Explanation:
Fischer esterification is a type of reaction used to convert carboxylic acids to ester in the presence of excess alcohol and a strong acid which acts as a catalyst. Another final product formed in the reaction is water.
The mechanism for the fischer esterification of Benzoic acid and C H 3 O H in the presence of HCl as the catalyst is shown in the image attached to this answer.
The final products of the reaction are methyl benzoate, water and H^+ as shown in the image attached.
Answer:
We identify nucleic acid strand orientation on the basis of important chemical functional groups. These are the <u>phosphate</u> group attached to the 5' carbon atom of the sugar portion of a nucleotide and the <u>hydroxyl</u> group attached to the <u>3'</u> carbon atom
Explanation:
Nucleic acids are polymers formed by a phosphate group, a sugar (ribose in RNA and deoxyribose in DNA) and a nitrogenous base. In the chain, the phosphate groups are linked to the 5'-carbon and 3'-carbon of the ribose (or deoxyribose) and the nitrogenous base is linked to the 2-carbon. Based on this structure, the nucleic acid chain orientation is identified as the 5'-end (the free phosphate group linked to 5'-carbon of the sugar) and the 3'-end (the free hydroxyl group in the sugar in 3' position).
Answer:
Carbon dioxide is moving out of the living things.
Explanation:
The food materials eaten by living things contain carbon in the form of complex organic matter. When living things feed, they ingest this complex organic material into their bodies.
During the process of digestion, this complex organic material is broken down to give glucose. Glucose is the energy molecule in living things. Excess glucose in the body is stored as glycogen.
During cellular respiration, glucose is broken down to release carbon dioxide. Hence, at night when the giraffe has stopped eating, cellular respiration continues to occur and carbon dioxide is released, that is, carbon dioxide continues to move out of living things at night.
Xylene moles =\frac{17.12}{106.16×1000}=0.00016moles=
106.16×1000
17.12
=0.00016moles
Moles of CO_2 =\frac{56.77}{44.01×1000}=0.0013CO
2
=
44.01×1000
56.77
=0.0013
Moles of H_2O= =\frac{14.53}{18.02×1000}=0.0008H
2
O==
18.02×1000
14.53
=0.0008
Moles ratios
\frac{0.0013}{0.0008}=1.625
0.0008
0.0013
=1.625
\frac{0.0008}{0.0008}=1
0.0008
0.0008
=1
Hence molecular fomula
The empirical formula is C 4H 5.
The molecular formula C8H10