The answer is B tell me if I am wrong.
Answer:
Part a)

Part B)

Explanation:
Part A)
As we know that the point A lies on the top of the loop
so we will have by energy conservation

so the speed at point A is given as




Part B)
Now the force equation at point A is given as

[/tex]


Answer:
Distance = 30m
Displacement = 6m W
Explanation:
Given the following:
Movement 1 = 18m W
Movement 2 = 12m E
Diatance is a scalar quantity with only magnitude and no direction. That is, in Calculating the distance moved by the locomotive, the direction of travel or movement of the object is not considered. It only measures the total amount of movement made during the Time of motion.
Therefore, total distance traveled equals :
Movement 1 + movement 2
18m + 12m = 30m
B) Displacement also measures the movement made by an object. However, Displacement is a vector quantity and therefore, considers both magnitude and direction of travel of the object. Therefore, it measures the overall change in position of the object from its starting position.
Therefore, Displacement of the locomotive equals:
18m W - 12m E = 6m E
Nothing, ATOMS lose or gain electrons to become IONS
<span>Two Na ATOMS lose 1 electron each and 1 S ATOM gains 2 electrons </span>
Yes. If your smartphone was floating in front of your face, motionless
relative to you, it would require a force to start it moving toward you or
away from you.
But there's no minimum force required. ANY force, no matter how small,
even smaller than the smallest force that you can imagine, would set it in
motion.
The thing is, though, that the smaller the force acting on it, the smaller
acceleration it would get, and the slower it would move away from where
it is.
So if, say, you wanted to send it across the crew compartment and over
to your sleeping bag on the wall, and you had all day to watch it mope
along over there, you might breathe on it, and the force of your breath
would set it in slow motion in that direction. But if you wanted to throw it
at your crewmate, you'd need to give it more force.