1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
3 years ago
11

Mechanical energy is a term that is used to describe

Physics
2 answers:
kolezko [41]3 years ago
5 0

Answer: B

both potential and kinetic

Rudiy273 years ago
3 0

Answer is   B.  both potential and kinetic energy.

You might be interested in
A cylindrical container closed of both end has a radius of 7cm and height of 6cm A.)find the total surface area of the container
Natalka [10]

Given:

A cylindrical container closed of both end has a radius of 7cm and height of 6cm.

Explanation:

A.) Find the total surface area of the container.

  • A = 2πrh + 2πr²
  • A = 2(3.14)(7)(6) + 2(3.14)(7 × 7)
  • A = 263.76 + 307.72
  • A = 571.48

B.) Find the volume of the container.

  • V = πr²h
  • V = (3.14)(7×7)(6)
  • V = 923.16

Not sure huhuness.

#CarryOnLearning

8 0
3 years ago
Read 2 more answers
Is a perch a consumer or...
labwork [276]
Yes a perch is a consumer.

8 0
3 years ago
A body which has surface area 5cm² and temperature of 727°C radiates 300J of energy in one minute. Calculate it's emissivity giv
cestrela7 [59]
<h2>Answer: 0.17</h2>

Explanation:

The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":  

P=\sigma A T^{4} (1)  

Where:  

P=300J/min=5J/s=5W is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 1W=\frac{1Joule}{second}=1\frac{J}{s}

\sigma=5.6703(10)^{-8}\frac{W}{m^{2} K^{4}} is the Stefan-Boltzmann's constant.  

A=5cm^{2}=0.0005m^{2} is the Surface area of the body  

T=727\°C=1000.15K is the effective temperature of the body (its surface absolute temperature) in Kelvin.

However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close.  So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:

P=\sigma A \epsilon T^{4} (2)  

Where \epsilon is the body's emissivity

(the value we want to find)

Isolating \epsilon from (2):

\epsilon=\frac{P}{\sigma A T^{4}} (3)  

Solving:

\epsilon=\frac{5W}{(5.6703(10)^{-8}\frac{W}{m^{2} K^{4}})(0.0005m^{2})(1000.15K)^{4}} (4)  

Finally:

\epsilon=0.17 (5)  This is the body's emissivity

3 0
3 years ago
Air enters a turbine operating at steady state with a pressure of 75 Ibf/in.^2, a temperature of 800º R and velocity of 400 ft/s
Arturiano [62]

Answer:

(a) W/m = 49.334 Btu/lb

(b) \frac{E_{d} }{m} = 22.12 Btu/lb

Explanation:

For the given problem, it can be assumed that the system is operating at steady state and the effects of potential energy can be neglected.

(a) Using the thermodynamic table for air.

At the temperature (T_{1})of 800 ºR and pressure (P_{1}) of 75 Ibf/in.^2, we can deduce that:

Specific enthalpy (h_{1}) = 191.81 BTu/lb

Specific entropy (s_{1}) = 0.6956 Btu/(lb.ºR)

At the temperature (T_{2})of 600 ºR and pressure (P_{2}) of 15 Ibf/in.^2, we can deduce that:

Specific enthalpy (h_{2}) = 143.47 BTu/lb

Specific entropy (s_{2}) = 0.6261 Btu/(lb.ºR)

The work done can be calculated using energy rate equation:

\frac{W}{m} = \frac{Q}{m} + (h_{1} - h_{2}) + \frac{V_{1}^{2} - V_{2}^{2}}{2}

Q/m = heat transfer = -2 Btu/lb

V_{1} = 400 ft/s

V_{2} = 100 ft/s

\frac{W}{m} = -2 + (191.81 - 143.47) + \frac{400^{2} - 100^{2}}{2}*[tex]\frac{1}{2*32.2*778}[/tex] = -2 + 48.34 + 29.938 = 49.334 Btu/lb

(b) To calculate the exergy destruction, we will use the equation for exergy rate:

\frac{E_{d} }{m} = [1-\frac{T_{o} }{T_{b} }](\frac{Q}{m}) - \frac{W}{m} + [(h_{1} - h_{2}) -T_{o}(s_{1} - s_{2}) + \frac{V^{2} _{1} - V_{2} ^{2}}{2}]

The equation above is further simplified to:

\frac{Ed}{m} = T_{o}[(s_{2} -s_{1}) - Rln\frac{P_{2} }{P_{1} } - \frac{Q/m}{T_{b} }]

Using a reference temperature (To) = 500 °R

Average surface temperature (Tb = 620°R

\frac{Ed}{m} = 500*[(0.6261 -0.6956) - (1.986/28.97)ln\frac{15 }{75 } - \frac{-2}{620}}]

\frac{E_{d} }{m} = 500*[-0.0695 +0.068688*1.609 +0.003225] = 22.12 Btu/lb

5 0
3 years ago
Help please
pychu [463]
The answer should be speed hope this helps

3 0
3 years ago
Read 2 more answers
Other questions:
  • Will you chech and finish these for me, because I am stumped with them.
    5·1 answer
  • How does nuclear fusion produce energy
    11·1 answer
  • An ideal spring hangs from the ceiling. A 1.55 kg1.55 kg mass is hung from the spring, stretching the spring a distance ????=0.0
    7·1 answer
  • How long does it take to raise the temperature of the air in a good-sized living room (3.00m×5.00m×8.00m) by 10.0∘C? Note that t
    10·1 answer
  • Un objeto de 1 kg se mueve con una velocidad cambia 10m/s¿se ha realizado trabajo sobre el objeto?​
    8·1 answer
  • Ejection of Electrons from Hydrogen by Incident Photons Light of wavelength 80 nm is incident on a sample of hydrogen gas, resul
    5·1 answer
  • Why is it difficult to prove the law of conservation of mass when a gas is produced?
    8·1 answer
  • In a circuit, energy is transferred to a charge.<br> Where is this energy transferred from?
    11·1 answer
  • What are action-reaction force pairs?
    6·2 answers
  • At which type of boundary between two tectonic plates is an earthquake or a tsunami most likely to form?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!