Answer:
20.42 N/m
Explanation:
From hook's law,
F = ke ......................... Equation 1
Where F = Force applied to the spring., k = spring constant, e = extension.
Make k the subject of the equation,
k = F/e ................. Equation 2
Note: The force on the spring is equal to the weight of the mass hung on it.
F = W = mg.
k = mg/e................ Equation 3
Given: m = 250 g = 0.25 kg, e = 37-25 = 12 cm = 0.12 m.
Constant: g = 9.8 m/s²
Substitute into equation 3
k = (0.25×9.8)/0.12
k = 20.42 N/m.
Hence the spring constant = 20.42 N/m
Answer:
The resulting magnetic force on the wire is -1.2kN
Explanation:
The magnetic force on a current carrying wire of length 'L' with current 'I' in a magnetic field B is
F = I (L*B)
Finding (L * B) , where L = (2, 0, 0)m , B = (30, -40, 0)
L x B =
= (0, 0, -80)
we can now solve
F = I (L x B) = I (-80)
F = -1200 kmN
F = -1200 kN * 10⁻³
F = -1.2kN
Because Mars is too far away for its gravitational pull to affect us, in addition Earths gravitational pull is greater than Mars anyways.
Answer:
The acceleration due to gravity at Pluto is 0.0597 m/s^2.
Explanation:
Length, L = 1 m
10 oscillations in 257 seconds
Time period, T = 257/10 = 25.7 s
Let the acceleration due to gravity is g.
Use the formula of time period of simple pendulum

Explanation :
Distance is total path travelled by an object during its entire journey. It is a scalar quantity i.e only magnitude.
Displacement is the shortest distance covered by an object. It is basically the change in position of object. It is a vector quantity i.e direction as well as magnitude.
When an object is travelling in a straight line and stops at the end point, then both distance and displacement are same.
When an object is travelling in a straight line and then changes its direction or we can say come backwards then the magnitude of distance and displacement are different.