a. 30 moles of H₂O
b. 2.33 moles of N₂
<h3>Further explanation</h3>
Given
a. 20 moles of NH₃
b. 3.5 moles of O₂
Required
a. moles of H₂O
b. moles of N₂
Solution
Reaction
4NH₃+3O₂⇒2N₂+6H₂O
a. From the equation, mol ratio NH₃ : H₂O = 4 : 6, so mol H₂O :
=6/4 x mol NH₃
= 6/4 x 20 moles
= 30 moles
b. From the equation, mol ratio N₂ : O₂ = 2 : 3, so mol N₂ :
=2/3 x mol O₂
= 2/3 x 3.5 moles
= 2.33 moles
Answer:
16.82 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm (P = 1.0 atm, STP conditions).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = mass/molar mass = (12.0 g)/(15.99 g/mol) = 0.7505 mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 0.0°C + 273 = 273.0 K, STP conditions).
<em>∴ V = nRT/P</em> = (0.7505 mol)(0.0821 L.atm/mol.K)(273.0 K)/(1.0 atm) = <em>16.82 L.</em>
It has to be intensive, which means it does not depend on the amount of the substance. Boiling point, melting point, and density are three intensive physical properties.
<span>19. Single displacement reactions are always redox reactions (they include reaction between an element and a compound where they will take place of another element in that compound).
20. It should be single displacement, where the displaced ion would form gas.</span>
The temperature will be lower and the water could either become really cold or freeze. I can't exactly tell you because you're not saying if it's Celsius or Fahrenheit. <span />