Answer:
Mole fraction O₂= 0.43
Explanation:
Mole fraction is the moles of gas/ total moles.
Let's determine the moles of each:
Moles O₂ → 15.1 g / 16 g/mol = 0.94
Moles N₂ → 8.19 g / 14 g/mol = 0.013
Moles H₂ → 2.46 / 2 g/mol = 1.23
Total moles = 2.183
Mole fraction O₂= 0.94 / 2.183 → 0.43
Answer: crest I don’t really know how to explain it but yea it’s crest
Answer:
See below
Explanation:
<u> Name </u> <u>Formula </u> <u> Major species </u> <u> </u>
Zinc iodide ZnI₂ H₂O(ℓ), I⁻(aq), Zn²⁺(aq),
Nitrogen(I) oxide N₂O H₂O(ℓ), N₂O(aq)
Sodium nitrite NaNO₂ H₂O(ℓ), Na⁺(aq), NO₂⁻(aq)
Glucose C₆H₁₂O₆ H₂O(ℓ), C₆H₁₂O₆(aq)
Nickel(II) iodide NiI₂ H₂O(ℓ), I⁻(aq), Ni²⁺(aq)
- Glucose and nitrogen(I) oxide are covalent compounds. They do not dissociate in solution.
- The compounds containing metals are ionic. They produce ions in solution.
- ZnI₂ and NiI₂ produce twice as many iodide ions as metal ions.
Answer:
Compound B has greater molar mass.
Explanation:
The depression in freezing point is given by ;
..[1]

Where:
i = van't Hoff factor
= Molal depression constant
m = molality of the solution
According to question , solution with 5.00 g of A in 100.0 grams of water froze at at lower temperature than solution with 5.00 g of B in 100.0 grams of water.
The depression in freezing point of solution with A solute: 
Molar mass of A = 
The depression in freezing point of solution with B solute: 
Molar mass of B = 

As we can see in [1] , that depression in freezing point is inversely related to molar mass of the solute.


This means compound B has greater molar mass than compound A,
Answer:
h2+O ---> H2O
reactants: H2 & O
products: H2O
Explanation:
The simple reaction that produces a water molecule from H2 and O would be the one written above, even though there are 2 hydrogen molecules, they will form an H2 molecule rather than 2 individual H molecules (almost never seen) the reactants would be your hydrogen and oxygen molecules individually before they bond to form a molecule of water (H2O) which is the product