Answer is: adding NaCl will lower the freezing point of a solution.
A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).
The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
Dissociation of sodium chloride in water: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).
Answer:
373.1 mL of AgCN (aq) must be poured into your electrolysis vat to ensure you have sufficient Ag to plate all of the forks.
Explanation:
Mass of silver to be precipitated on ecah spoon = 0.500 g
Number of silver spoons = 250
Total mass of silver = 250 × 0.500 g = 125 g

Moles of AgCN = n = 
Volume of AgCN solution =V
Molarity of the AgCN = 2.50 M

(1 L = 1000 mL)
373.1 mL of AgCN (aq) must be poured into your electrolysis vat to ensure you have sufficient Ag to plate all of the forks.
Answer:
Mass=50.0g
H=670J
change in temperature=40
using. c=h÷m×change in temperature
c=670÷50×40
C=670÷2000
C=0.335jkg-1k-1
Answer: The value of the equilibrium constant Kc for this reaction is 3.72
Explanation:
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
For the given chemical reaction:
The expression for
is written as:
Thus the value of the equilibrium constant Kc for this reaction is 3.72
Answer:
3.67 moles of N
Explanation:
The epinephrine's chemical formula is: C₉H₁₃O₃N
We were told that a chemist found that in a mesaure of epinephrine, he found 33 moles of C
We must know that 9 moles of C are in 1 mol of C₉H₁₃O₃N so, let's make a rule of three:
If 9 moles of C are found in 1 mol of C₉H₁₃O₃N
Therefore 33 moles of C must be found in (33 .1) / 9 = 3.67 moles of C₉H₁₃O₃N
There is a second rule of three, then.
In 1 mol of C₉H₁₃O₃N we have 1 mol of N
Then, 3.67 moles C₉H₁₃O₃N must have (3.67 . 1) / 1 = 3.67 moles of N
Remember 1 mol of C₉H₁₃O₃N has 9 moles of C, 13 moles of H, 3 moles of O and 1 mol of N