Answer:
A physical change, such as a state change or dissolving, does not create a new substance, but a chemical change does. In a chemical reaction, the atoms and molecules that interact with each other are called reactants. In a chemical reaction, the atoms and molecules produced by the reaction are called products.
Answer:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
Explanation:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol can be calculated using the following equation:
<u>Where:</u>
<em>μ (l): is the chemical potential of 2-propanol in solution </em>
<em>μ° (l): is the chemical potential of pure 2-propanol </em>
<em>R: is the gas constant = 8.314 J K⁻¹ mol⁻¹ </em>
<em>T: is the temperature = 82.3 °C = 355.3 K </em>
<em>x: is the mole fraction of 2-propanol = 0.41 </em>

Therefore, the chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
I hope it helps you!
Answer:
The equilibrium concentrations are:
[SO2]=[NO2] = 0.563 M
[SO3]=[NO] = 1.04 M
Explanation:
<u>Given:</u>
Equilibrium constant K = 3.39
[SO2] = [NO2] = [SO3] = [NO] = 0.800 M
<u>To determine:</u>
The equilibrium concentrations of the above gases
Calculation:
Set-up an ICE table for the given reaction

I 0.800 0.800 0.800 0.800
C -x -x +x +x
E (0.800-x) (0.800-x) (0.800+x) (0.800+x)
The equilibrium constant is given as:
![Keq = \frac{[SO3][NO]}{[SO2][NO2]}=\frac{(0.800+x)^{2}}{(0.800-x)^{2}}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BSO3%5D%5BNO%5D%7D%7B%5BSO2%5D%5BNO2%5D%7D%3D%5Cfrac%7B%280.800%2Bx%29%5E%7B2%7D%7D%7B%280.800-x%29%5E%7B2%7D%7D)

x = 0.2368 M
[SO2]=[NO2] = 0.800 -x = 0.800 - 0.2368 = 0.5632 M
[SO3]=[NO] = 0.800 +x = 0.800 + 0.2368 = 1.037 M
Uranus. Its axis is tilted to almost 90 degrees.
Answer is: Not all mixtures have solutes and solvents.
Solution is homogeneous mixture composed of two or more substances.
In aqueous solution, solvent is water and solute (for example salt) is a substance dissolved in water.
Homogeneous solution of salt and water can be separated with heating (evaporating the water).