The correct answer to this question is "5." the oxidation number of cl in ClO3 will be a positive 5 because oxygen is naturally a -2 charge. times that by three and then account for the negative charge of the CLO3- ion.
V(C₄H₆O₃) = 5.00 mL.
d(C₄H₆O₃) = 1.08 g/mL.
m(C₄H₆O₃) = V(C₄H₆O₃) · d(C₄H₆O₃).
m(C₄H₆O₃) = 5.00 mL · 1.08 g/mL.
m(C₄H₆O₃) = 5.4 g.
n(C₄H₆O₃) = m(C₄H₆O₃) ÷ M(C₄H₆O₃).
n(C₄H₆O₃) = 5.4 g ÷ 102 g/mol.
n(C₄H₆O₃) = 0.0529 mol.
n(C₇H₆O₃) = 2.08 g ÷ 138.1 g/mol.
n(C₇H₆O₃) = 0.015 mol; limiting reactant.
From chemical reaction: n(C₄H₆O₃) : n(C₉H₈O₄) = 1 : 1.
n(C₉H₈O₄) = 0.015 mol.
m(C₉H₈O₄) = 0.015 mol · 180.16 g/mol.
m(C₉H₈O₄) = 2.71 g; theoretical yield.
percent yield od aspirine = 2.57 g ÷ 2.71 g · 100% = 94.83%.
The answer is A I’m not 100 percent sure tho
Put it in a beaker. Use a smaller beaker filled half way with ice and water and place in the larger one. It should be about an inch or two above the mixture. Heat over a Bunsen burner and the naphthalene will deposit on the bottom of smaller beaker.
And in this way, nephthalene be separated from the mixture of KBR and sand.
Answer:
It might cause fire or extreme smoke.
Explanation: