Answer:

Explanation:
1. Number of electrons

2. Number of protons

3. Identify the ion
An atom with 26 protons is iron, Fe.
A neutral atom of iron would have 26 electrons.
The ion has only 24 electrons, so it has lost two. The ion must have a charge of +2.

Answer:
At equilibrium, the concentration of
is going to be 0.30M
Explanation:
We first need the reaction.
With the information given we can assume that is:
+
⇄ 2
If there is placed 0.600 moles of NO in a 1.0-L vessel, we have a initial concentration of 0.60 M NO; and no
nor
present. Immediately,
and
are going to be produced until equilibrium is reached.
By the ICE (initial, change, equilibrium) analysis:
I: [
]=0 ; [
]= 0 ; [
]=0.60M
C: [
]=+x ; [
]= +x ; [
]=-2x
E: [
]=0+x ; [
]= 0+x ; [
]=0.60-2x
Now we can use the constant information:
![K_{c}=\frac{[products]^{stoichiometric coefficient} }{[reactants]^{stoichiometric coefficient} }](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5Bproducts%5D%5E%7Bstoichiometric%20coefficient%7D%20%7D%7B%5Breactants%5D%5E%7Bstoichiometric%20coefficient%7D%20%7D)
= 
= 
= 




At equilibrium, the concentration of
is going to be 0.30M
Answer:
A, B, C
Explanation:
Notice that this reaction involves double arrows, meaning this represents an equilibrium reaction in which we observe a forward reaction (combination of hemoglobin and oxygen) and a reverse reaction (decomposition of the oxyhemoglobin complex).
Upon inhalation of oxygen, it accesses the blood of a person and binds to hemoglobin, so the following reaction proceeds to the right.
Similarly, the opposite process takes place in muscles, oxyhemoglobin is decomposed back into hemoglobin and oxygen.
The equilibrium constant reaction is relatively high, since at standard conditions, this is a spontaneous reaction, hemoglobin combines with oxygen without any additional external source of energy.
Mass of ammonium sulfate = 660.7 g
<h3>Further explanation</h3>
Given
3.01 x 10²⁴ molecules of ammonium sulfate
Required
mass
Solution
The mole is the number of particles(molecules, atoms, ions) contained in a substance
1 mol = 6.02.10²³ particles
Can be formulated
N=n x No
N = number of particles
n = mol
No = Avogadro's = 6.02.10²³
mol ammonium sulfate (NH₄)₂SO₄ :
n = N : No
n = 3.01 x 10²⁴ : 6.02 x 10²³
n = 5
mass ammonium sulfate :
= mol x MW
= 5 x 132,14 g/mol
= 660.7 g
<h3>
Answer:</h3>
43.27 g Mg
<h3>
Explanation:</h3>
The balanced equation for the reaction between magnesium metal and hydrochloric acid is;
Mg(s) + 2HCl(aq) → MgCl₂(aq) + H₂(g)
From the equation;
1 mole of magnesium reacts with 2 moles of HCl
We are given;
3.56 moles of Mg and 3.56 moles of HCl
Using the mole ratio;
3.56 moles of Mg would react with 7.12 moles of HCl, and
3.56 moles of HCl would react with 1.78 moles of Mg
Therefore;
The amount of magnesium was in excess;
Moles of Mg left = 3.56 moles - 1.78 moles
= 1.78 moles
But; 1 mole of Mg = 24.305 g/mol
Therefore;
Mass of magnesium left = 1.78 moles × 24.305 g/mol
= 43.2629 g
= 43.27 g
Thus, the mass of magnesium that remained after the reaction is 43.27 g