248.72 g/mol
CuSO4 has a molar mass of 159.62. H2O has a molar mass of 18.02, which is multiplied by 5 to reflect the 5 H2O molecules.
159.62+5(18.02)=249.72 g/mol
1. Two parallel normal faults form.
4. The hanging wall on the left slides down relative to the footwall.
5. The hanging wall on the right slides down relative to the footwall.
Mg (s) + HCl (aq) → MgCl₂(s) + H₂(g)
Looking at the equation :
We have 1 Mg at the left hand side and 1 Mg as well on the right hand side.
So that is balanced.
We have 1 H at the left hand side and 2 H on the right hand side.
So that is not balanced. Same for Chlorine. Cl.
We add 2 to the HCl on the left hand side and that balances it.
Mg(s) + 2HCl(aq) → MgCl₂(s) + H₂(g)
Answer:
the answer is option E they are bronsted lowry acid
C
This is because 10+5=15
15/45=0.3