Answer:
V = 34.55 L
Explanation:
Given that,
No of moles, n = 1.4
Temperature, T = 20°C = 20 + 273 = 293 K
Pressure, P = 0.974 atm
We need to find the volume of the gas. It can be calculated using Ideal gas equation which is :
PV=nRT
R is gas constant, 
Finding for V,

So, the volume of the gas is 34.55 L.
Answer:
3.46x10⁴
Explanation:
Hello,
In this case, we can see that the number 34,560 has five significant figures, it means that if we want to write it with three, we must take the 3, 4 and 5 only. Nevertheless, since the 6 after the five is greater than 5, we can round such five to 6, so we obtain:
346
However, the decimal places cannot get lost, therefore, we move the given thousand to the three, so the number turns out:
3.46x10⁴
Best regards.
Answer:

Explanation:
Formula for the calculation of no. of Mol is as follows:

Molecular mass of Ag = 107.87 g/mol
Amount of Ag = 5.723 g

Molecular mass of S = 32 g/mol
Amount of S = 0.852 g

Molecular mass of O = 16 g/mol
Amount of O = 1.695 g

In order to get integer value, divide mol by smallest no.
Therefore, divide by 0.02657



Therefore, empirical formula of the compound = 
Answer:
41.3kJ of heat is absorbed
Explanation:
Based in the reaction:
Fe₃O₄(s) + 4H₂(g) → 3Fe(s) + 4H₂O(g) ΔH = 151kJ
<em>1 mole of Fe3O4 reacts with 4 moles of H₂, 151kJ are absorbed.</em>
63.4g of Fe₃O₄ (Molar mass: 231.533g/mol) are:
63.4g Fe₃O₄ × (1mol / 231.533g) = <em>0.274moles of Fe₃O₄</em>
These are the moles of Fe₃O₄ that react. As 1 mole of Fe₃O₄ in reaction absorb 151kJ, 0.274moles absorb:
0.274moles of Fe₃O₄ × (151kJ / 1 mole Fe₃O₄) =
<h3>41.3kJ of heat is absorbed</h3>
<em />