Molarity is defined as the number of moles of solute in 1 L of solution
molarity of solution to be prepared is 0.85 M
this means that there should be 0.85 mol of KBr in 1 L of solution
if 1 L contains - 0.85 mol
then 25.0 mL should contain - 0.85 mol / 1000 mL x 25.0 mL = 0.0213 mol
mass of KBr - 0.0213 mol x 119 g/mol = 2.53 g
mass of KBr that should be dissolved in 25.0 mL is 2.53 g
<span>35.0 mL of 0.210 M
KOH
molarity = moles/volume
find moles of OH
do the same thing for: 50.0 mL of 0.210 M HClO(aq) but for H+
they will cancel out: H+ + OH- -> H2O
but you'll have some left over,
pH=-log[H+]
pOH
=-log[OH-]
pH+pOH
=14</span>
Answer:
B) sand
Explanation:
A) Oil is a wrong choice because it is a liquid not a solid and also if it is oil, it will float over the water surface as a droplets.
B) Sand is the right choice, because sand is a solid and it does not dissolve in water and stabilizes at the bottom.
C) Sugar is a wrong choice, because small amount of sugar will dissolve in water and be a homogeneous solution and does not appear as a particles.
D) Wood ships is also a wrong choice, even it is a solid and does not dissolve in water, but it will float over the water surface.
Answer:
The equilbrium constant is 179.6
Explanation:
To solve this question we can use the equation:
ΔG = -RTlnK
<em>Where ΔG is Gibbs free energy = 12.86kJ/mol</em>
<em>R is gas constant = 8.314x10⁻³kJ/molK</em>
<em>T is absolute temperature = 298K</em>
<em>And K is equilibrium constant.</em>
Replacing:
12.86kJ/mol = -8.314x10⁻³kJ/molK*298K lnK
5.19 = lnK
e^5.19 = K
179.6 = K
<h3>The equilbrium constant is 179.6</h3>