1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ulleksa [173]
3 years ago
5

Energy is the ability to do.

Physics
2 answers:
pogonyaev3 years ago
7 0
Energy is the ability to do work
Aleks04 [339]3 years ago
6 0
Energy is the ability to do work
You might be interested in
(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Sup
KengaRu [80]

Answer:

a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

Explanation:

a) The work, measured in joules, is a physical variable represented by the following integral:

W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx

Where

x_{o}, x_{f} - Initial and final position, respectively, measured in meters.

F(x) - Force as a function of position, measured in newtons.

Given that F = k\cdot x and the fact that F = 25\,N when x = 0.3\,m - 0.2\,m, the spring constant (k), measured in newtons per meter, is:

k = \frac{F}{x}

k = \frac{25\,N}{0.3\,m-0.2\,m}

k = 250\,\frac{N}{m}

Now, the work function is obtained:

W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx

W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}]

W = 0.313\,J

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.

b) Let be r(\theta) = 2\cdot \sin 5\theta. The area of the region enclosed by one loop of the curve is given by the following integral:

A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta

A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta

By using trigonometrical identities, the integral is further simplified:

A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta

A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta

A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta

A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)

A = 4\pi

The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

5 0
3 years ago
Imagine that you are working as a roller coaster designer. You want to build a record breaking coaster that goes 70.0 m/s at the
Rzqust [24]

Wow !  This is not simple.  At first, it looks like there's not enough information, because we don't know the mass of the cars.  But I"m pretty sure it turns out that we don't need to know it.

At the top of the first hill, the car's potential energy is

                                  PE = (mass) x (gravity) x (height) .

At the bottom, the car's kinetic energy is

                                 KE = (1/2) (mass) (speed²) .

You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down.  So now, here comes the big jump.  Put a comment under
my answer if you don't see where I got this equation:

                                   KE = 0.9  PE

        (1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)     

Divide each side by (mass): 

               (0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)

(There goes the mass.  As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)

Divide each side by (0.9):

               (0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)

Divide each side by (9.8 m/s²):

               Height = (5/9)(4900 m²/s²) / (9.8 m/s²)

                          =  (5 x 4900 m²/s²) / (9 x 9.8 m/s²)

                          =  (24,500 / 88.2)  (m²/s²) / (m/s²)

                          =        277-7/9    meters
                                  (about 911 feet)
3 0
3 years ago
Which material is the best heat insulator?<br><br> metal<br><br> wood<br><br> plastic<br><br> glass
OlgaM077 [116]
Of the materials listed wood is the best insulator. It would be the least hot if exposed to similar temperatures.
5 0
3 years ago
Read 2 more answers
Need help best answer will get brainiest
solong [7]

Answer:

1) A trait is a specific feature or characteristic, typically genetic.

2) One trait that helps an animal survive is a Chameleon's camouflage. Camouflage helps the chameleon blend in with their surroundings to avoid a predator or to sneak up on prey.

Explanation:

6 0
3 years ago
Read 2 more answers
Gravity is dependent on which of the two factors? mass and weight distance and weight mass and force mass and distance
andre [41]
Gravity = m₁m₂G / r²

G constant
m mass
r distance
8 0
3 years ago
Read 2 more answers
Other questions:
  • Objects: A balloon full of helium in the air. Air- 1.27 kg/ml or Helium Balloon- 0.33 kg/ml
    8·1 answer
  • Which of the following describes a response to external stimuli?
    14·2 answers
  • What is the main idea of quantum psychics?
    8·1 answer
  • For a given substance, the molecules<br> move fastest when the substance is
    8·1 answer
  • Which of these describe life sustaining functions that all organisms and cells perform\
    9·1 answer
  • What words go in the missing blanks?
    9·1 answer
  • A satellite with mass 6000 kg is orbiting the planet at 2500 km above the planet's
    8·1 answer
  • A bicyclist, initially at rest, begins pedaling and gaining speed steadily for 4.90s during which she covers 25.0m.
    11·1 answer
  • Forces and pres
    9·1 answer
  • if length of the spring is doubled, what will happen to its time period? if mass of the spring is doubled and spring constant wi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!