Answer:
Uhm i think its a
Explanation:
srry if i get it wrong ._. my bad
What do we know that might help here ?
-- Temperature of a gas is actually the average kinetic energy of its molecules.
-- When something moves faster, its kinetic energy increases.
Knowing just these little factoids, we realize that as a gas gets hotter, the average speed of its molecules increases.
That's exactly what Graph #1 shows.
How about the other graphs ?
-- Graph #3 says that as the temperature goes up, the molecules' speed DEcreases. That can't be right.
-- Graph #4 says that as the temperature goes up, the molecules' speed doesn't change at all. That can't be right.
-- Graph #2 says that after the gas reaches some temperature and you heat it hotter than that, the speed of the molecules starts going DOWN. That can't be right.
--
The chemical formula for water, H2o means that each water molecule contains one oxygen atom and two hydrogen atoms. This is the formula for water which has a liquid form, a solid form as ice, and also a gaseous form as water vapor.
Answer:
a) E = 4.5*10⁴ V/m
b) C= 17.7 nF
c) Q = 159. 3 nC
Explanation:
a)
- By definition, the electric field is the electrostatic force per unit charge, and since the potential difference between plates is just the work done by the field, divided by the charge, assuming a uniform electric field, if V is the potential difference between plates, and d is the separation between plates, the electric field can be expressed as follows:

b)
- For a parallel-plate capacitor, applying the definition of capacitance as the quotient between the charge on one of the plates and the potential difference between them, and assuming a uniform surface charge density σ, we get:

From (1), we know that V = E*d, but at the same time, applying Gauss'
Law at a closed surface half within the plate, half outside it , it can be
showed than E= σ/ε₀, so finally we get:

c)
- From (3) we can solve for Q as follows:

<h3><u>Answer;</u></h3>
= 64 N/m
<h3><u>Explanation</u>;</h3>
According to Hooke's Law for a helical spring or an elastic material, extensional force is directly proportional to the distance the material has extended.
F = ke; where F is the extension force, k is the spring constant, and e is the distance extended.
Thus;
k = F/e
= 44N/0.69 m
= 63.768 N/m
<u>= 64 N/m</u>