I believe the energy released in cellular respiration is in the form of ATP.
Answer:
An object at rest does not move and an object in motion does not change its velocity, unless an external force acts upon it
Explanation:
This statement is also known as Newton's first law, or law of inertia.
It states that the state of motion of an object can be changed only if there is an external force (different from zero) acting on it: therefore
- If an object is at rest, it will remain at rest if there is no force acting on it
- If an object is moving, it will continue moving at constant velocity if there is no force acting on it
This phenomenon can be also understood by looking at Newton's second law:
F = ma
where
F is the net force on an object
m is the mass
a is the acceleration
If the net force is zero, F = 0, the acceleration of the object is also zero, a = 0: therefore, the velocity of the object does not change, and it will continue moving at the same velocity (which can be zero, if the object was at rest).
Answer:
Work done = 35467.278 J
Explanation:
Given:
Height of the cone = 4m
radius (r) of the cone = 1.2m
Density of the cone = 600kg/m³
Acceleration due to gravity, g = 9.8 m/s²
Now,
The total mass of the cone (m) = Density of the cone × volume of the cone
Volume of the cone = 
thus,
volume of the cone =
= 6.03 m³
therefore, the mass of the cone = 600 Kg/m³ × 6.03 m³ = 3619.11 kg
The center of mass for the cone lies at the
times the total height
thus,
center of mass lies at, h' = 
Now, the work gone (W) against gravity is given as:
W = mgh'
W = 3619.11kg × 9.8 m/s² × 1 = 35467.278 J
Refer to the diagram shown below.
g = 9.8 m/s², and air resistance is ignored.
For mass m₁:
The normal reaction is m₁g.
The resisting force is R₁ = μm₁g.
For mass m₂:
The normal reaction is m₂g.
The resisting force is R₂ = μm₂g.
Let a = the acceleration of the system.
Then
(m₁ + m₂)a = F - (R₁ + R₂)
(14+26 kg)*(a m/s²) = (65 N) - 0.098*(9.8 m/s²)*(14+26 kg)
40a = 65 - 38.416 = 26.584
a = 0.6646 m/s²
Answer: 0.665 m/s² (nearest thousandth)
Answer:
numbers
Explanation:
Virtually all unimaginable processes can be described as the movement of certain objects. To analyze and predict the nature of the movements that result from the different kinds of interactions, some important concepts such as momentum, force and energy have been invented. If momentum, force, and energy are known and expressed in a quantitative way (that is, by numbers) it is possible to establish rules by which the resulting movements can be predicted.