Answer:
8.625 grams of a 150 g sample of Thorium-234 would be left after 120.5 days
Explanation:
The nuclear half life represents the time taken for the initial amount of sample to reduce into half of its mass.
We have given that the half life of thorium-234 is 24.1 days. Then it takes 24.1 days for a Thorium-234 sample to reduced to half of its initial amount.
Initial amount of Thorium-234 available as per the question is 150 grams
So now we start with 150 grams of Thorium-234





So after 120.5 days the amount of sample that remains is 8.625g
In simpler way , we can use the below formula to find the sample left

Where
is the initial sample amount
n = the number of half-lives that pass in a given period of time.
Explanation:
An electron current, the flow of electrons, contributes to an electric current since the electron 'carries' negative electric charge. ... The flow of ions (either positively or negatively charged) also contributes to an electric current in, for example, the electrolyte of an electrochemical cell.
hope it will work well?!
Answer:
oxygen, water and sugar are the out come of photosynthesis
There are 1.48 × 10²⁵ molecules of zinc oxide in a 2 kg sample. Details about number of molecules can be found below.
<h3>How to calculate number of molecules?</h3>
The number of molecules of a substance can be calculated by multiplying the number of moles of the substance by Avogadro's number.
According to this question, there are 2000g of ZnO in a sample. Zinc oxide has a molar mass of 81.38 g/mol.
no of moles = 2000g ÷ 81.38g/mol
no of moles = 24.57mol
number of molecules = 24.57 × 6.02 × 10²³
number of molecules = 147.95 × 10²³
Therefore, there are 1.48 × 10²⁵ molecules of zinc oxide in a 2 kg sample.
Learn more about number of molecules at: brainly.com/question/11815186
#SPJ1
Answer:
The molarity of the formed CaBr2 solution is 0.48 M
Explanation:
Step 1: Data given
Number of moles CaBr2 = 0.72 moles
Volume of water = 1.50 L
Step 2: Calculate the molarity of the solution
Molarity of CaBr2 solution = moles CaBr2 / volume water
Molarity of CaBr2 solution = 0.72 moles / 1.50 L
Molarity of CaBr2 solution = 0.48 mol / = 0.48 M
The molarity of the formed CaBr2 solution is 0.48 M