Answer:
6 days
Explanation:
The following data were obtained from the question:
Original amount (N₀) = 100 mg
Amount remaining (N) = 6. 25 mg
Time (t) = 24 days
Half life (t½) =?
Next, we shall determine the decay constant. This can be obtained as follow:
Original amount (N₀) = 100 mg
Amount remaining (N) = 6. 25 mg
Time (t) = 24 days
Decay constant (K) =?
Log (N₀/N) = kt / 2.303
Log (100/6.25) = k × 24 / 2.303
Log 16 = k × 24 / 2.303
1.2041 = k × 24 / 2.303
Cross multiply
k × 24 = 1.2041 × 2.303
Divide both side by 24
K = (1.2041 × 2.303) / 24
K = 0.1155 /day
Finally, we shall determine the half-life of the isotope as follow:
Decay constant (K) = 0.1155 /day
Half life (t½) =?
t½ = 0.693 / K
t½ = 0.693 / 0.1155
t½ = 6 days
Therefore, the half-life of the isotope is 6 days
Answer:chicken butt I need some points
Explanation:blm ✊✊✊✊ white lives don't
it is either "aweak acid or a lousy (or very weak) acid"
Answer:
n = 7.86 mol
Explanation:
This question can be solved using the ideal gas law of PV = nRT.
Temperature must be in K, so we will convert 22.5C to 295 K ( Kelvin = C + 273).
R is the ideal gas constant of 0.0821.
(2.24atm)(85.0L) = n(0.0821)(295K)
Isolate n to get:
n = (2.24atm)(85.0L)/(0.0821)(295K)
n = 7.86 mol
Explanation:
The given following standard cell notation.
Mg(s) | Mg^2+ (aq) || Aq^+(aq) | Aq(s)
Oxidation:
....(1)
Magnesium metal by loosing 2 electrons is getting converted into magnesium cation. Hence, getting oxidized
Reduction:
...(2)
Silver ion by gaining 1 electrons is getting converted into silver metal. Hence, getting reduced.
Overall redox reaction: (1)+2 × (2)
