<span>pv=nrt; Pressure and moles are constant.
p=nr(150k)/.5 L; Pressure initially
After temp change
pv=nrt; What is volume?
v=nr(350k)/p; p is constant so we can substitute from above
v=nr(350k)/(nr(150k)/.5 L))
v=350/150/.5 L
v=4.66 liters</span>
Answer: Option (c) is the correct answer.
Explanation:
When an acid or base is added to a solution then any resistance by the solution in changing the pH of the solution is known as a buffer.
This is because a buffer has the ability to not get affected by the addition of small amounts of an acid or a base. As a result, it helps in maintaining the pH of the solution.
In the give case, when we add the HCl then more number of protons will dissociate. This causes the acetate to react with the protons and leads to the formation of acetic acid.
We know that acetic acid is a weak acid and it dissociates partially or feebly. Therefore, no change in pH will take place.
Thus, we can conclude that equation
represents the chemical reaction that accounts for the fact that acid was added but there was no detectable change in pH.
The citric acid cycle should be the answer.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The partial pressure is
Explanation:
The Partial pressure of
is mathematically represented as

Where
is the total pressure of water with a value of 15.5 mm of Hg
is the partial pressure of water with a value 753 mm of Hg
Now substituting values

The correct option is H - H
Compare to other type of bonds given above, the hydrogen to hydrogen bond is very unreactive. This is because the bond is very stable. Each of the hydrogen atom in the bond donate their single electron to form a covalent bond, which is quite stable.