The ansewr is A i would guess
Answer:
V₂ = 530.5 mL
Explanation:
Given data:
Initial temperature = 20.0°C
Final temperature = 40.0 °C
Final volume = 585 mL
Initial volume = ?
Solution:
Initial temperature = 20.0°C (20+273 = 293 K)
Final temperature = 40.0 °C (40+273 = 323 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₂ = 585 mL × 293 K / 323 K
V₂ = 171405 mL.K / 323 K
V₂ = 530.5 mL
Answer:
It is not water absorbant and also the colour black, due to it's dark nature makes the person wearing the cloth feel hot. Unlike cotton, silk is not at all water absorbant as it does not absord any sweat produced in the wearers body
Answer:
d. 12.3 grams of Al2O3
Explanation:
Based on the reaction:
4Al + 3O2 → 2Al2O3
<em>Where 4 moles of Al reacts in excess of oxygen to produce 2 moles of aluminium oxide.</em>
<em />
To solve this question we must find the moles of Aluminium. With these moles we can find the moles of aluminium oxide using the reaction:
<em>Moles Al -Molar mass: 26.9815g/mol-</em>
6.50g * (1mol / 26.9815g) = 0.241 moles Al
<em>Mass Al₂O₃ -Molar mass: 101.96g/mol-</em>
0.241 moles Al * (2 mol Al2O3 / 4 mol Al) = 0.120 moles Al2O3
0.120 moles Al2O3 * (101.96g / mol) =
12.3g of Al2O3 are produced.
Right answer is:
<h3>d. 12.3 grams of Al2O3
</h3>