ANSWER
625 m/s
EXPLANATION
Given:
• The frequency of the sound wave, f = 250 Hz
,
• The wavelength, λ = 2.5 m
Find:
• The speed of the wave, v
The speed of a wave of wavelength λ and frequency f is given by,

Substitute the known values and solve,

Hence, the speed of the wave is 625 m/s.
Answer: The correct answer is "the speed of the wave becomes four times".
Explanation:
The relation between the speed, frequency and the wavelength is as follows:
v=f\lambda
Here, v is the speed of the wave, f is the frequency and \lambda is the wavelength.
The speed of the sound wave is directly proportional to the frequency.
In the given problem, if the speed of the sound wave is increased four times then the speed of the sound becomes four times.
Therefore, the speed of the sound wave becomes four times.
, to hit nails into a piece of wood or a wall, or to break things into pieces.
(A) P(v) = 0.135v
(B) P(h) = 0.234v
<u>Explanation:</u>
Given-
Mass of the ball, m = 0.27kg
Force, F = 125N
angle of projection, θ = 30°
Let v be the velocity of the ball.
A) vertical component of the momentum of the volleyball
We know,
P(vertical) = mvsinθ
P(V) = 0.27 X v X sin 30°
P(V) = 0.27 X v X 0.5
P(V) = 0.135v
B) horizontal component of the momentum of the volleyball
We know,
P(Horizontal) = mvcosθ
P(h) = 0.27 X v X cos 30°
P(h) = 0.27 X v X 0.866
P(h) = 0.234v
Answer:
possibly because the car is running out of gas
Explanation: