1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amid [387]
3 years ago
8

The number of students in a cafeteria is modeled by the function p that satisfies the logistic differential equation dp/dt = 1/2

000 p(200-p), where t is the time in seconds and p(0) = 25. what is the greatest rate of change, in students per second, of the number of students in the cafeteria?
Physics
2 answers:
Sergio [31]3 years ago
7 0
The function that we are given represents the rate of change. If p is the number of students in the cafeteria and you take the first derivative with respect to time you get the rate of change. Now we have to find the maxima of this function. This is usually done by finding the first derivate and then finding its roots. In this case, we are not explicitly given the function p(t) so we can't do that. You could solve the given differential equation and then find the second derivative. However, there is an easier way. We know that parabola has its maximum in the vertex. So all we have to do is find the vertex of the parabola we are given.
p'(t)=\frac{1}{2000}p(200-p)\\ p'(t)=\frac{1}{2000}(200p-p^2)\\ p'(t)=-\frac{p^2}{2000}+\frac{p}{10}
So we are given parabola with the following parameters:
a=-\frac{1}{2000}\\ b=\frac{1}{10}\\ c=0
The x (or in our case p coordinate) coordinate of the vertex is given with this formula:
p_v=\frac{-b}{2a}\\ p_v=100
We plug this back into the original equation to obtain the maximum rate of change:
p'_{max}=-\frac{100^2}{2000}+\frac{100}{10}=5$students/s
You can check out the graph of the first derivative on this link: https://www.desmos.com/calculator/tgmnxqb7fd

lina2011 [118]3 years ago
4 0

Answer:

Maximum rate of change will be

(\frac{dp}{dt})_{max} = 5 at p = 100

Explanation:

As we know that rate of change in students per second is given by

r = \frac{dp}{dt} = \frac{1}{2000} p(200 - p)

here we need to find the greatest rate of change in the number of students

So in order to find the greatest value of the rate of students we have to put the differentiation of of the above function to be zero

so we have

\frac{dr}{dp} = 0

0 = \frac{1}{2000} (200 - 2p)

by solving above equation we have

p = 100

so maximum rate of students will be at the condition when p = 100

so the value of maximum rate will be

\frac{dp}{dt} = \frac{1}{2000}(100)(200 - 100)

\frac{dp}{dt} = 5

You might be interested in
You hang a tv on your wall. What kind of energy does it have?
lara31 [8.8K]

Answer:

potential, not moving

Explanation:

5 0
3 years ago
Barney walks at a velocity of 1.7 meters/second on an inclined plane, which has an angle of 18.5° with the ground. What is the h
Viktor [21]
The velocities and the speed build a triangle, where the 1.7 m/s are the hypotenuse and the x-velocity and y-velocity are the other sides. 

<span>So the x-velocity is: speed*cos(angle) </span>

<span>now plug in </span>
<span>x=1.7 m/s * cos(18.5)=1.597 m/s </span>


3 0
3 years ago
A sportscar has a mass of 1500 kg and accelerates at 5 meters per second squared. What is the magnitude of the force acting on t
Hatshy [7]

Answer:

7500 Newtons

Explanation:

Mass of the sportscar= 1500 kg

Acceleration of the sportscar= 5m/s^2

Hence, let the Force acting on it be F

We\ know\ that,\\Force=Mass*Acceleration\\F=ma\\\\Here,\\F=1500*5\\=7500 kg m/s^2\ or\ 7500\ Newtons

4 0
3 years ago
TRUE OR FALSE! PLZ HELP
Ksju [112]

Answer:

True

Explanation:

Magnitude is the "value" the greater the value the greater the force is and vice versa

5 0
2 years ago
Equations to use: v= λ ∙ f v=d/t
Margarita [4]

b. 460.8 m/s

Explanation:

The relationship between the speed of the wave along the string, the length of the string and the frequency of the note is

f=\frac{v}{2L}

where v is the speed of the wave, L is the length of the string and f is the frequency. Re-arranging the equation and substituting the data of the problem (L=0.90 m and f=256 Hz), we can find v:

v=2Lf=2(0.90 m)(256 Hz)=460.8 m/s

c. 18,000 m

Explanation:

The relationship between speed of the wave, distance travelled and time taken is

v=\frac{d}{t}

where

v = 6,000 m/s is the speed of the wave

d = ? is the distance travelled

t = 3 s is the time taken

Re-arranging the formula and substituting the numbers into it, we find:

d=vt=(6,000 m/s)(3 s)=18,000 m

3 0
3 years ago
Other questions:
  • Which statement correctly describes the differences between positive and negative acceleration? Positive acceleration describes
    13·2 answers
  • A 10 kg box rests on the ground. What is the weight of the box? __ N
    10·2 answers
  • A transverse wave is set up in a very long string. The oscillator is set at 20.0 Hz, and the wave speed is 78 m/s. The amplitude
    6·1 answer
  • A wheel rotates without friction about a stationary horizontal axis at the center of the wheel. A constant tangential force equa
    13·1 answer
  • The coefficient of static friction between hard rubber and normal street pavement is about 0.90. On how steep a hill (maximum an
    14·2 answers
  • Question 5
    6·1 answer
  • When measuring the potential difference across a component, you need
    14·2 answers
  • This happens because the.....particles are most likely to escape from the liquid, causing the temperature of the liquid to.....
    15·1 answer
  • Lực hút trái đất là dì
    8·1 answer
  • The force of attraction that a -40.0 μC point charge exerts on a +108 μC point charge has magnitude 4.00 N. How far apart are th
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!