Answer:
6.13 s
219 N
Explanation:
Newton's law in the x direction:
∑F = ma
150 cos 30° N − 50 N = (30 kg) a
a = 2.66 m/s²
Δx = v₀ t + ½ at²
(50 m) = (0 m/s) t + ½ (2.66 m/s²) t²
t = 6.13 s
Newton's law in the y direction:
∑F = ma
Fn + 150 sin 30° N − (30 kg) (9.8 m/s²) = 0
Fn = 219 N
Missing figure: http://d2vlcm61l7u1fs.cloudfront.net/media/f5d/f5d9d0bc-e05f-4cd8-9277-da7cdda3aebf/phpJK1JgJ.png
Solution:
We need to find the magnitude of the resultant on both x- and y-axis.
x-axis) The resultant on the x-axis is

in the positive direction.
y-axis) The resultant on the y-axis is

in the positive direction.
Both Fx and Fy are positive, so the resultant is in the first quadrant. We can find the angle and so the direction using

from which we find
Answer:
the distance traveled by the car is 42.98 m.
Explanation:
Given;
mass of the car, m = 2500 kg
initial velocity of the car, u = 20 m/s
the braking force applied to the car, f = 5620 N
time of motion of the car, t = 2.5 s
The decelaration of the car is calculated as follows;
-F = ma
a = -F/m
a = -5620 / 2500
a = -2.248 m/s²
The distance traveled by the car is calculated as follows;
s = ut + ¹/₂at²
s = (20 x 2.5) + 0.5(-2.248)(2.5²)
s = 50 - 7.025
s = 42.98 m
Therefore, the distance traveled by the car is 42.98 m.
My very eager mother just served us nine pizzas
Answer:

Explanation:
As we know that resistance of one copper wire is given as

here we know that

now we have


now we know that such 17 resistors are connected in parallel so we have


Now if a single copper wire has same resistance then its diameter is D and it is given as

now from above two equations we have


now we have
