The Bernoulli distribution is a distribution whose random variable can only take 0 or 1
- The value of E(x2) is p
- The value of V(x) is p(1 - p)
- The value of E(x79) is p
<h3>How to compute E(x2)</h3>
The distribution is given as:
p(0) = 1 - p
p(1) = p
The expected value of x2, E(x2) is calculated as:

So, we have:

Evaluate the exponents

Multiply

Add

Hence, the value of E(x2) is p
<h3>How to compute V(x)</h3>
This is calculated as:

Start by calculating E(x) using:

So, we have:


Recall that:

So, we have:

Factor out p

Hence, the value of V(x) is p(1 - p)
<h3>How to compute E(x79)</h3>
The expected value of x79, E(x79) is calculated as:

So, we have:

Evaluate the exponents

Multiply

Add

Hence, the value of E(x79) is p
Read more about probability distribution at:
brainly.com/question/15246027
Do you want us to answer or simplify?
Simplify:=−18x^7 y^3 + 21x^5 y^4+ 15x^2 y^5
P(most favorable outcome) = 1 -(0.03 +0.16 -0.01) = 0.82
_____
"repair fails" includes the "infection and failure" case, as does "infection". By adding the probability of "repair fails" and "infection", we count the "infection and failure" case twice. So, we have to subtract the probability of "infection and failure" from the sum of "repaire fails" and "infection" in order to count each bad outcome only once.
The probability of a good outcome is the complement of the probability of a bad outcome.
Circumference = πD
30π = πD
D = 30 inches
Answer: 30 inches
Three thousand three hundred and seventy eight