0.040 mol / dm³. (2 sig. fig.)
<h3>Explanation</h3>
in this question acts as a weak base. As seen in the equation in the question,
produces
rather than
when it dissolves in water. The concentration of
will likely be more useful than that of
for the calculations here.
Finding the value of
from pH:
Assume that
,
.
.
Solve for
:
![\dfrac{[\text{OH}^{-}]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^{+}]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\text{equilibrium}} = \text{K}_b = 1.58\times 10^{-3}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D_%5Ctext%7Bequilibrium%7D%5Ccdot%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BNH%7D%5E%7B%2B%7D%5D_%5Ctext%7Bequilibrium%7D%7D%7B%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BN%7D%5D_%5Ctext%7Bequilibrium%7D%7D%20%3D%20%5Ctext%7BK%7D_b%20%3D%201.58%5Ctimes%2010%5E%7B-3%7D)
Note that water isn't part of this expression.
The value of Kb is quite small. The change in
is nearly negligible once it dissolves. In other words,
.
Also, for each mole of
produced, one mole of
was also produced. The solution started with a small amount of either species. As a result,
.
,
,
.
Answer:
Rate of reaction = -d[D] / 2dt = -d[E]/ 3dt = -d[F]/dt = d[G]/2dt = d[H]/dt
The concentration of H is increasing, half as fast as D decreases: 0.05 mol L–1.s–1
E decreseas 3/2 as fast as G increases = 0.30 M/s
Explanation:
Rate of reaction = -d[D] / 2dt = -d[E]/ 3dt = -d[F]/dt = d[G]/2dt = d[H]/dt
When the concentration of D is decreasing by 0.10 M/s, how fast is the concentration of H increasing:
Given data = d[D]/dt = 0.10 M/s
-d[D] / 2dt = d[H]/dt
d[H]/dt = 0.05 M/s
The concentration of H is increasing, half as fast as D decreases: 0.05 mol L–1.s–1
When the concentration of G is increasing by 0.20 M/s, how fast is the concentration of E decreasing:
d[G] / 2dt = -d[H]/3dt
E decreseas 3/2 as fast as G increases = 0.30 M/s
Answer: Equilibrium constant for this reaction is
.
Explanation:
Chemical reaction equation for the formation of nickel cyanide complex is as follows.
We know that,
K =
We are given that,
and,
Hence, we will calculate the value of K as follows.
K =
K = 
= 
Thus, we can conclude that equilibrium constant for this reaction is
.
The reaction of sodium bromide with chlorine gas is Cl₂(aq) + 2Na + 2Br? 2Na + 2Cl⁻ + Br²(aq).
<h3>What is sodium bromide?</h3>
Sodium bromide is an inorganic compound, white, crystalline with high melting point.
The reaction between halogens is redox reaction
Oxidation – 2Br⁻ ? Br₂ + 2e⁻ loss of electron.
Reduction – Cl₂ + 2e⁻ ? 2Cl⁻ gains of electron.
Thus, the correct option is Cl₂(aq) + 2Na + 2Br? 2Na + 2Cl⁻ + Br²(aq).
Learn more about sodium bromide
brainly.com/question/15409724
#SPJ4
0.986 moles of CaO are formed when 98.60 g of
decomposes.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others.
Number of moles of CaCO3 =
Number of moles of CaCO3 = 
= 0.986 moles
Reaction:
→ 
Since the reaction is 1:1:1.
So 0.986 moles of CaO are formed.
Learn more about moles here:
brainly.com/question/26416088
#SPJ1